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Abstract

Experiments often focus on recovering an average effect of a treatment on an
outcome. A subgroup analysis involves identifying subgroups of observations for
which the treatment is particularly efficacious or deleterious. Since these sub-
groups are not preregistered but instead discovered from the data, significant
inferential issues emerge. We discuss methods for conduct honest inference on
subgroups, meaning generating valid p-values and confidence intervals which ac-
count for the fact that the subgroups were not specified a priori. Central to this
approach is the split-sample strategy, where half the data is used to identify ef-
fects and the other half to test them. After an intuitive and formal discussion of
these issues, we provide simulation evidence and two examples illustrating these
concepts in practice.
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1 Introduction

In an experimental analysis, randomized assignment of a treatment variable allows for unbi-

ased estimation of an average causal effect of the treatment. The average effects of interest

are specified in advance by the researcher, and standard inferential tools allow estimation

and testing of these effects. Every average effect, though, is itself a composite of lower-level
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subgroup effects. A subgrouping is a partition of the sample into mutually exclusive subsets,

normally split on observed covariates (e.g. Berry, 1990). A subgroup is one of these homoge-

nous subsets, such as females, residents of a particular town, or white voters under thirty,

and a subgroup effect is the average treatment effect for this subgroup. While randomization

allows us to safely average over subgroups, a subgroup analysis turns this problem on its

head: given data, how can we identify subgroups of the data where the treatment was most

or least efficacious (e.g. Lagakos, 2006; Rothwell, 2005; Assmann et al., 2000)?

Subgroup effect estimation is crucial in at least four different settings. First, it can

help identify the most impactful treatment from a set of possible treatments. In the face

of increasingly complex designs, such as the conjoint analysis (Hainmueller, Hopkins and

Yamamoto, 2014), the most effective treatment may involve a combination of two or three

possible treatment conditions. Second, it can help characterize an ideal treatment for a

given observation, which is of particular import when making policy prescriptions (Murphy,

2003). Third, a subgroup analysis can help with recent concerns over replicability. It may

be that average estimate effects may fluctuate from one sample to the next, but this fluc-

tuation may be attributable due to the fact that the samples have different distributions of

underlying subgroups. Fourth, the analysis can help guide the researcher in designing the

next experiment. As experimental analyses are part of a slow, careful accumulation ofcausal

results (e.g. Samii, 2016), a subgroup analysis on a given experiment can help illuminate a

likely mechanism and encourage future studies to focus on where an effect is most likely to

be realized.

Despite this promise, the subgroup analysis raises two interrelated problems endemic to

the design. A subgroup may be of theoretical interest and included in a preregistration

plan prior to the experiment being conducted, and then tested as normal. When we say

a subgroup analysis, though, we refer explicitly to an analysis where the goal is to identify

effect heterogeneity among subgroups that were not specified prior to administering the

experiment. The ex post nature of the analysis makes inference challenging. Simply reporting

p-values from tests on subsets of the data that are not pre-registered is among the worst

forms of data-dredging (e.g. Simmons, Nelson and Simonsohn, 2011). Second, the number of

possible subgroups grows exponentially in the number of covariates. By the time we include
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a modest number of covariates, the number of potential subgroups can grow to the hundreds

or thousands.

A wide range of off-the-shelf machine learning methods can be used to relax model het-

erogeneities in data (e.g. Montgomery and Olivella, 2018; Grimmer, Messing and Westwood,

2017; Green and Kern, 2012; Hill and Jones., 2014; LeBlanc and Kooperberg, 2010; Beck,

King and Zeng, 2000). As we discuss below, these methods suffer in two regards. First,

these off-the-shelf machine learning methods are tailored for optimal prediction, rather than

optimal subgroup estimation. The difference between the two is that the best predictive

values are driven by confounders, like partisanship or previous behavior, and most of the

information in the data goes to learning these confounding effects rather than the treatment

effects, which are often an order of magnitude smaller. Optimal subgroup estimation, in-

stead, requires focusing on variables that drive the treatment effect, not those that drive

the outcome. Second, these methods do not allow for valid inference on subgroup effects.

Learning subgroup effects and conducting inference on them is too much to ask of any single

dataset, regardless of the statistical method being used. Without reliable inferential claims,

subgroup analysis devolves into fishing. We introduce a set of practices designed to allow for

optimal estimation of subgroup effects as well as valid inferential claims to be made about

these inferential effects.

In this work, we provide an overview of subgroup analysis aimed at the practical user.

The discussion divides into three parts. The first details how a subgroup analysis fits into the

design and pre-registration of an experiment. We show how to conduct an honest subgroup

analysis, where the word honest takes on both technical and colloquial meanings. The key, as

we discuss more below, is to think of a subgroup analysis as a process of discovery rather than

a test, so the process itself needs to be specified in advance even if the outcome is unknown.

We focus on how to generate optimal point estimates and valid uncertainty estimates, where

the latter point has remained underdeveloped in the literature. We then revisit these concepts

in a formal framework, highlighting how these ideas come into play when thinking about

heterogeneity and inference. In this section, we discuss several methods that can be utilized

for a subgroup analysis. The third section contains an illustrative simulation, showing how

the split-sample approach reduces bias in subgroup estimation. The section also includes two
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worked-through examples, the first with a single binary treatment and the second illustrating

how to conduct a subgroup analysis with multiple treatments and levels from a conjoint

experiment. The conclusion discusses avenues of future work.

2 Design, Preregistration, and Honesty

The “replication crisis” that originated in several of our cognate fields has spurred a reconsid-

eration of our experimental procedures (Gelman and Loken, 2014, provide a nice overview).

At root, this crisis stems from the divergence between the theoretical guarantees of our

means of inference and actual practice. Adjusting how we run experiments, including now-

standard practice such as preregistration and a preanalysis plan, guards against the worst

threats to the validity of our hypothesis testing. Our focus is on extending these same ideas

to a subgroup analysis. We will describe a way for conducting honest subgroup analysis.

We mean the word honest in two senses: first, formally, in that the procedures we discuss

achieve a theoretically guaranteed error rate, but also second, in that an honest procedure

creates statistical guardrails against misleading or deceptive inferences.

Our focus, then, is on not just estimating subgroup effects but inference on estimated

or recovered effects. We first describe honesty in the context of testing an ex ante specified

single null hypothesis, illustrating notions of validity, controlling an error rate, and honesty.

In this section, we abstract what makes a testing procedure valid. We then move on to

generalize these concepts to a subgroup analysis.

2.1 Honest and Efficient Inference on a Single Hypothesis

We focus on three separate concepts in thinking about inference on a single, pre-specified

hypothesis: validity, honesty, and power. A test statistic for the hypothesis is valid if the false

positive rate can be controlled by the researcher. A false positive occurs when a statistically

significant result is observed even though the null hypothesis, normally of no causal effect,

is true. We say that the false positive rate on a test is controlled at rate α if the researcher

can guarantee that the proportion of statistically significant results that would be observed

under the null is no more than α. Controlling the false positive rate is a first-order concern

in experimental studies, as statistical significance serves as a crucial and necessary step in
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establishing that an estimated effect reflects a systematic relationship in the data. A testing

procedure is honest if it results in a valid test statistic. For example, preregistering a design

and hypothesis and then testing the hypothesis using a difference-in-means, as described in

a preanalysis plan, results in an honest test.

An honest procedure has several components, and each can be violated if care is not

exercised. That these violations lead to invalid p-values is well-understood (e.g. Wasserstein

and Lazar, 2016; Gelman and Loken, 2014). Pre-registering handles these threats for the case

of a single hypothesis, or small set of pre-declared hypotheses. First, the data generating

process must be fixed, which, in practice, requires registering not just the design but how

variables will be coded (Gelman and Loken, 2014). Second, the hypothesis must be generated

independent of the data used to test them. Pre-specifying a hypothesis prior to running the

experiment satisfies this requirement, though we discuss additional methods for doing so

below in the context of a subgroup analysis. Third, the full set of hypotheses to be tested

must be specified in advance. This guards against data-dredging, and again is satisfied by

requiring the researcher to hypothesize effects prior to the experiment. Lastly, a valid test

statistic must be used. If several exist, a more powerful method should be selected. In the

case of a single hypothesis, using a t-test will achieve this goal, but the issue of power grows

more important when learning hypotheses from the data.

2.2 Honest and Efficient Inference with a Subgroup Analysis

An experiment can help uncover three sets of causal effects: hypotheses specified in advance;

hypotheses learned from the data; and discovered effects. The three classes differ on the

persuasiveness of their evidence, ranging from highest to lowest. The first class is already

addressed with current preregistration practices, so we move instead to the next two classes,

which are the focus of subgroup analysis.

The second class are hypotheses learned and tested from the data. In order to return

honest p-values, the procedure must maintain two of the attributes designed above. The

procedure must not identify effects and test them on the same data. Recent work has

advocated “sample-splitting” as a central feature of maintaining honesty (Wager and Athey,

2017; Athey and Imbens, 2016; Chernozhukov et al., 2018). In this framework, half the data
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is used to identify promising subgroups, and the other half of the data is used to test them.

Were the same data to both generate hypotheses and test them, the p-values would not be

valid; sample-splitting serves a crucial role in maintaining honesty (see, e.g. van der Vaart,

1998, ch. 25).

Concerns over power emerge when trying to estimate subgroup effects. While an average

effect may be estimated off all the data, each subgroup is estimated over a smaller subset.

Estimating relevant subgroups at this stage involves confronts an additional, and subtler,

issue: the subgroup effects we are interested in have an impact an order of magnitude below

the effect of the confounders. This has substantial implications on the estimation strat-

egy. Most off-the-shelf machine learning methods try to predict the observed outcome as

accurately as possible; this is a distinctly different concept than trying to estimate a causal

effect. In many settings, the most important predictive variables are those that are the best

known and least interesting. For intuition, consider the problem of predicting whether an

individual exposed to a treatment condition votes. The strongest treatment effect may come

from engaging in meaningful conversation with a canvasser, but this effect is an order of

magnitude less than whether the respondent voted in the last election. A method tuned

for prediction will spend quite a bit of power in the data learning the relationship between

past and future voting, while a method sensitive to heterogeneity will ignore the past voting

variable and focus primarily on variables that involve the treatment (Imai and Ratkovic,

2013). The predictive models are distracted by these known, but strong, confounders. In-

stead, the estimation strategy needs to target causal heterogeneities and avoid these known

effects. Doing so involves rethinking standard estimation strategies, and we return to how

to accomplish this below.

Inference on subgroup effects at this stage comes with two important caveats. First, since

the data is split in half, so is the power of this method. This only seems fair, though, since we

are asking two things of the data: identifying a subset of subgroups and then testing them.

The second caveat is that both splits of the data come from the same, single experiment. The

subgroups identified, then, may be the result of a peculiarity of this particular experiment,

which serves as the key distinction between the first two classes of hypotheses.

A crucial question for the second class of hypotheses are how to identify them from the
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data. We discuss two different sets of methods below. The first point-identify subgroups in

one split and test them in a second. The confidence intervals and p-values can be read off the

test split. The second set return a fitted model of treatment effects, and must be explored

by the researcher. Looking at plots of the estimated effects variable-by-variable is itself a

form of exploration that must be accounted for; we recommend pre-registering the plots (say,

all one-way or two-way effects across variables) and taking a Bonferroni-adjusted threshold

for significance. For example, a researcher interested in learning subgroup effects across

five variables, ignoring interactions among them, should use a split-sample machine learning

method to estimate confidence intervals across each variable, but use a p-value threshold of

1/5 times their allowable false positive rate (say 0.1 or 0.05) on the subgroup effects.

The final set of subgroup effects are those for which we make inferential claims about

the proportion of false positives in the entire set, rather than the false positive rate on any

particular hypothesis. Rather than control the false positive rate, the probability that a

given statistically significant effect is in-truth null, we control the false discovery rate: the

proportion of discovered effects that are false. We describe a means of doing so below, but for

this third class of effect, our inferential goals change. In the previous set of hypotheses, we

are trying to make claims about how a treatment effect varies along a particular covariate.

In this set, we are looking through a potentially massive set of hypotheses and attempting

to discover plausible candidates to be tested in the next experiment.

This final set of effects should be considered when the number of potential hypotheses

is massive. This may occur in two settings. First, if the researcher is considering all 3- or

4-way interactions, which is plausible in a conjoint setting, the number of possible subgroup

effects may grow to the thousands or above quickly. Second, the researcher may have a

large number of covariates. For example, if the pre-treatment covariates include a textual

component, the term-document matrix may have thousands of unigrams or bigrams. In this

case, there is little hope of testing each hypothesis, but we may be able to identify subgroups

that may be worth testing in the next experiment.
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2.3 Concrete Recommendations for Subgroup Analysis in a Pre-

analysis Plan

For clarity, we provide our concrete recommendations to generate an honest subgroup anal-

ysis below:

1. Preregister the covariates, along with the level of interaction, that are going to define

subgroups targeted for inference.

2. Preregister the method and, if applicable, the random seed with which it will be ini-

tialized. Utilize a method that estimates subgroup effects directly, to maximize power,

and implements a sample splitting in this step, to maintain honesty of inference.

3. Preregister the marginal plots that will be used to look for heterogeneity. Every plot

should be thought of as a degree of freedom, such that the p-value threshold should be

Bonferroni adjusted. These uncovered effects can be discussed using the language of

significance, but with the understanding that the process is conditional on the partic-

ular implementation of the experiment.

4. In order to define discovered effects, pre-register an acceptable false discovery rate and

implement a method that achieves this rate. No inferential claims about statistical

significance can be made about these, but interesting discoveries should be noted for

future experimentation.

With a high-level discussion out of the way, we turn to a formal discussion of the problem

and then discuss several options for implementing a subgroup analysis.

3 The Formal Framework

Treatment effects and subgroup effects are best characterized in the potential outcomes

framework (Imbens and Rubin, 2015; Holland, 1986). We consider observations from a

random sample i ∈ {1, 2, . . . , N}. We observe for each observation an outcome Yi, a vector

and a vector of covariates Xi, with X an arbitrary covariate profile. We will denote as

zi ∈ {0, 1, 2, 3, . . . , K} the random vector taking value in one of K + 1 different treatment
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conditions, Zi as its observed value, and Z as an arbitrary value that can be taken by the

treatment. In the case of a single binary treatment, zi ∈ {0, 1}. In a more complex setting,

say with one treatment with three levels and another with four levels, K = 11 = 3× 4− 1,

the total number of treatment conditions beyond the control condition. The level zi = 0

is reserved for the baseline level for each treatment. In this setting, each observation i has

a potential outcome function yi(Zi) = Yi that maps each treatment level to an observed

outcome.1

The average treatment effect for treatment condition Z ∈ {0, 1, 2, . . . K} is denoted as

τi(Z) = yi(Z)− yi(0)

and with average effect

τ(Z) = E {yi(Z)− yi(0)} . (1)

If the treatment is randomized, a difference-in-means estimate is unbiased for τ(Z).

We are also interested in the subgroup effect for observations with some covariate profile

of interest X. We write this conditional average treatment effect or CATE as

τ(Z;X) = E {yi(Z)− yi(0)|Xi = X} ,

which is the treatment effect of condition Z for observations with covariate profile X.

We next turn to two central issues: how to estimate these heterogeneities effectively and

how to conduct inference on them honestly.

3.1 Maximizing Power in Estimating Subgroup Effects

Uniformly powerful tests are simple when estimating average treatment effects, as t-tests

or least squares models can returning unbiased and efficient estimates. Power grows more

important in estimating subgroup effects. First, of course, each subgroup is characterized by

a fraction of the data. Second, we need to differentiate between the best predictive model and

1We make the standard assumptions that each treatment has only one version, there is non-interference
among units, and every treatment condition is realized with positive probability.
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the model best suited to uncover subgroup effects. Off-the-shelf machine learning methods

that find the best prediction focus on the most pronounced aspects of the data. This results

in the method “learning” non-causal relationships in the data that are already known to, and

often uninteresting to, the researcher. Efficient and powerful estimation of subgroup effects

requires differentiating a predicted value from a subgroup effect, and directly targeting the

latter.

To formalize, we follow Athey and Imbens (2016) and distinguish between two different

types of estimation strategies. The first attempts tries to explain as much variance in the

outcome as possible, given the treatment and outcomes. Taking µ(Z,X) = E(Yi|Zi =

Z,Xi = X), the first minimizes

µ̂(Z,X) = argmin
µ̃

E
{

(Yi − µ̃(Zi, Xi))
2
}

which is the best predictive model. Off-the-shelf machine learning methods will attempt to

minimize this predictive error.

The subgroup analysis can at its most general can be characterized as finding the combi-

nations of potential treatments and covariate profiles that gives the largest value of treatment

heterogeneity. The second set of methods attempt to explain as much treatment heterogene-

ity as possible,

τ̂(Z,X) = argmin
τ̃

E
{(
τ(Zi;Xi)− τ̃i(Zi, Xi)

)2}
We should favor methods that directly estimate τ̂ rather than those that estimate µ̂ and

reconstruct τ̂ . The former group is efficient, while the latter are not. The difference between

the two approaches is subtle, but important. The predictive approach will attempt to learn

the best model of the outcome, which includes more than the treatment effects of interest.

Consider partitioning the predictive loss function into two components: a component that

varies with the treatment and one that does not. The second element, that does not vary

with the treatment, is of no interest to the researcher, and any information in the data spent

on this component is wasted. The treatment heterogeneity approach only considers variance

in the outcome that can be explained with the treatment variable. The predictors that are
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of no interest are differenced-out , focusing estimation on covariates that drive the treatment

effect.

Characterized in this way, two questions present themselves: how can we discover these

heterogeneities and how can we conduct inference on our findings? We turn to each question

in turn.

3.2 Estimating Treatment Effect Heterogeneity

We discuss two approaches that can be used to generate efficient estimates of treatment

effects. The first approach was most recently advanced in a series of papers by Susan Athey

and colleagues (Athey and Imbens, 2016; Wager and Athey, 2017; Athey, Tibshirani and

Stefan Wager. Annals of Statistics, 2019). The loss function

τ̂(Z,X) = argmin
τ̃

E
{

(τ(Zi;Xi)− τ̃(Zi, Xi))
2}

is not feasible, since we do not know the true function τ(Z;X). The authors show that the

estimate

τ̂(Z,X) = argmin
τ̃

−E
{
τ̃(Zi, Xi)

2
}

will optimally recover treatment effect heterogeneity.2 The loss function offers a nice practical

interpretation: a method that attempts to explain as much treatment effect heterogeneity

as possible is optimal for recovering subgroup effects. The authors have then developed a

suite of tree- and forest-based methods that efficiently estimate subgroup effects.

A second approach for avoiding confounders involves removing their effect prior to iden-

tifying the subgroups. Recently advocated by Chernozhukov et al. (2018), the approach

requires a two-step procedure. In the first step, the effect of the confounding variables is

taken out of the outcome and treatment variable, generating variables

Ỹi = Yi − E(Yi|Xi); Z̃i = Zi − E(Zi|Xi).

2The derivation relies crucially on having an unbiased estimate of τ̂(Zi, Xi), which itself requires a split-
sample approach to estimation. We return to this point below, but see Athey and Imbens (2016) for a
derivation.
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We refer to these as the “partialed out” variables (Robinson, 1988; Chernozhukov et al., 2018;

Neyman, 1979), since we have subtracted off the impact of the confounders. Importantly,

any machine learning method can be used to conduct the partialing out; see Chernozhukov

et al. (2018) for formal details. We then run a method for discovering subgroups on these

partialed out values.

Importantly, if the treatment is properly randomized by the experimenter, such that

the value of E(Zi|Xi), this value need not be estimated. In this case, a predictive model

and a model incorporating inverse probability of treatment weights are asymptotically in-

distinguishable. If, on the other hand, there is some fear that that the experiment was not

perfectly executed, then the researcher may prefer to utilize some method to adjust for any

bias that can be accounted for by the covariates.

Both methods were designed not just with an eye to estimation but also inference. They

are both implemented using a split-sample approach in order to ensure honest inference, a

point to which we turn next.

3.3 Split-Sample Approaches for Honest Inference

As discussed above, the goal with a subgroup analysis is not just to identify relevant sub-

groups but to inferential claims about those that are uncovered. The classes of methods

described directly above were designed to be implemented using a split sample. A split

sample involves taking the data and simply splitting it into two equally sized subsets; the

splits may be done completely at random or may be done with respect to any blocking in

the experiment.

For tree-based methods, one split of the data is used to learn the tree structure, and then

the second split of the data is used to conduct inference at each terminal node; a set of these

trees may be aggregated up to a forest. Similarly, using the partialing-out approach, one

split of the data is used to remove the effect of the confounders and the second is used to

learn subgroup effects.

Previous work has used the split-sample approach to recover honest estimates of regres-

sion coefficients (Robinson, 1988; Chernozhukov et al., 2018) or average treatment effects

(Wager and Athey, 2017). We extend this approach to show, in some generality, that the
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split-sample approach can be used to guarantee valid inference on a test statistic. Specif-

ically, we describe an honest procedure where the split-sample approach can be used to

conduct valid inference. The method involves a split-sample approach. The first split of the

data is used to select a subgroup effect to be tested, and a null hypothesis of zero effect is

assumed. The second split of the data is used to test this hypothesis, using any valid test.

We show that this method is honest.

To formalize, we assume a set of null hypotheses, each corresponding with a potential

subgroup effect upon which we may wish to conduct inference. We will denote null hypothesis

h asH0 with h ∈ {1, 2, . . . , H}. The observed sample is denoted S. We assume a test statistic

t̂h for null Hh
0 and a significance threshold as t∗h such that the researcher can control the false

positive rate on the test. For example, t̂h may be a z-statistic and t∗h the familiar threshold

of 1.96. An effect is significant if the test-statistic is larger than the threshold. We also

assume that t̂h is estimated and t∗h selected to give the same false positive rate across all

hypotheses. We use the data to learn a promising subgroup, say h(S), and make a null

hypothesis about it, Hh(S)
0 , to differentiate the null from a hypothesis made independent of

the data, Hh
0 . Under null hypothesis Hh

0 , a false positive occurs if 1(|t̂h| > t∗h) and the false

positive rate we wish to achieve is

E
{
1
(
|t̂h| > t∗h

)
|Hh

0

}
= E

{
E
(
1(|t̂h| > t∗h)|S,Hh

0

)}
,

where the outer expectation is over repeated samples, under the null. The issue in a full-

sample subgroup analysis is that we have consulted the data to learn the hypothesis Hh(S)
0 ,

which renders our false positive rate incorrect:

E
{
E
(
1(|t̂h| > t∗h)|S,Hh

0

)}
6= E

{
E
(
1(|t̂h| > t∗h)|S,H

h(S)
0

)}
(2)

Intuitively, if we use the data to select a promising subgroup effect, then it is biased towards

being significant, since we are using the same data to test the hypothesis that we used to

uncover it.

Instead, assume we have two equally-sized splits of the data, S1 and S2, where we use S1
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to learn a promising subgroup and S2 to test it, our false positive rate is

E
{
E
(
1(|ẑ| > z∗)|S2,Hh(S1)

0

)}
By decoupling selection and testing of the hypothesis, this procedure returns a valid test,

E
{
E
(
1(|ẑ| > z∗)|S2,Hh(S1)

0

)}
= E

{
1(|t̂h| > t∗h)|Hh

0

}
.

To see this, first fix S1, which fixes Hh(S1)
0 . In this setting, any false positive is attributable

to variance in S2, which returns a valid test. Since we can imagine, then, sampling over

S1 repeatedly, the test is valid since any connection between selecting the hypothesis and

testing it is broken.

In practice, we have shown that a valid test of a null hypothesis generated from a split

sample will achieve the nominal error rate. There are, of course, several practical issues

that may interfere with this result. First, there may be something about the particular

experiment that is not representative of the full population. Irregularities in administering

the experiment will bias any estimate and invalidate the procedure. Second, this method

falls prey to issues of multiple testing as well as any. The preferred approach, which we

recommend, is to pre-specify how many tests are anticipated and then Bonferroni-correct

the p-values.

3.3.1 Adjusting for Multiple Hypotheses

The false positive rate is the probability of a false positive on a single hypothesis, over

repeated samples. The family-wise error rate is the probability of achieving a false positive

amongst a family of K hypotheses. Define the number of statistically significant effects from

a set of K hypotheses h ∈ HK as

V =
∑
h∈HK

1(|t̂h| > t∗h).
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Denote HK
0 as the composite null hypothesis that every hypothesis in HK is true. The

family-wise error rate is

E
{
V > 0|HK

0

}
Of course, as we test more hypothesis, the probability of a false positive increases. The

simplest way to adjust for this issue is with a Bonferroni correction. The method is a simple,

but valid, method for adjusting for multiple-hypotheses. The correction simply involves

replacing a p-value threshold of p∗ with p∗/K, and doing so allows control of the familywise

error rate (e.g. Esarey and Summer, 2015).

3.4 Controlling the False-Discovery Rate

The previous discussion has focused on testing a particular hypothesis, whether it is specified

in advance or learned from the data. We turn now from a hypothesis-testing framework to a

hypothesis-discovery framework. The goal shifts from rejecting a particular null to estimating

a set of possible effects, but controlling the proportion of effects that are false.

Define as R the number of selected effects. The false discovery rate is

E {V/R} = E {V/R|R > 0}Pr(R > 0)

where the second form of the expression excludes the case whereR = 0. The standard method

for controlling the false discovery rate is the Benjamini-Hochberg Procedure. The method

works in the following fashion. Given a large set of hypothesis and desired false discovery

rate α, the Benjamini-Hochberg Procedure works in two steps. First, the K estimated p-

values on each test are ordered from smallest to largest, as {p(1), p(2), . . . , p(K)}. Then, the

selected set are the tests associated with p-values such that

{
k : p(k) <

k

K
α

}
(3)

This procedure guarantees a false discovery rate on the set of discovered hypotheses of below

α. The acceptable false discovery rate should be specified in advance; 0.1 and 0.05 are
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standard values.

The discovered effects should be considered as a group, as we cannot make claims about

any one hypothesis. The goal here is to reduce thousands of possible effects to a manageable

number that can be explored in the next round of experimentation. The full set of hypotheses

and acceptable false discovery rate should be specified in advance.

3.5 Estimation Advice

In this section, we provide advice on particular algorithms that can be used for subgroup

analysis. As these methods are commonly updated, we expect that our concrete recommen-

dations may be out of date at some point. Therefore, we strive here and above to highlight

our reasoning as well as our recommendations.

If the goal is using a model-based machine learning method in order to learn subgroup

effects, then the researcher should not implement methods that do not engage in sample-

splitting or, at the least, make some differentiation between estimating the treatment effect

and prediction. Examples include off-the shelf predictive tools like random forests or their

Bayesian variants (e.g. Hill and Jones., 2014) and super learners that average over multi-

ple methods (e.g., Grimmer, Messing and Westwood, 2017). While these are excellent for

prediction, they are not optimized for uncovering subgroup effects or properly tuned for

inference.

If the experiment has a single, binary treatment, we recommend implementing the gener-

alized random forest algorithm of Athey, Tibshirani and Stefan Wager. Annals of Statistics

(2019). The method uses a split-sample approach, with one sample to learn a tree structure

then the other for inference. This process is repeated and embedded within a random forest,

such that all the data is used at some point to either learn a heterogeneous tree structure or

to estimate a treatment effect. We implement this method in an application below.

The case of multiple treatments does not lend itself as well to the tree and forest approach,

since any number of heterogeneous effects now exist and may need estimation. Here, we

suggest using some version of a sparse model combined with a split-sample approach in order

to find an effect. The method would split the data, and model the outcome in terms of the

covariates on one half of the data. A large set of controls, interactions, and higher-order terms
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should be included. In the second, the partialed out outcome should be regressed on a large

set of covariates comprised of treatment × covariate interactions. We recommend a sparse

model, such that it takes a large number of these interactions and returns some subset of

the most relevant. The standard LASSO (e.g. Hastie, Tibshirani and Friedman., 2013) does

not return standard errors, so we offer two alternatives. First, recent work uses the LASSO

to select covariates, but then runs least squares on a subset of the selected covariates. The

confidence intervals and p-values on these uncovered effects are valid (Belloni et al., 2017).

A second set of methods use a Bayesian framework to recover a subset of relevant effects,

and either (Park and Casella, 2008; Carvalho, Polson and Scott, 2010, e.g.); see Ratkovic

and Tingley (2017) for a full discussion and extensions.

If you have a large number of subgroups or treatment-covariate interactions, such as

tens of thousands or more, we recommend the Benjamini-Hochberg approach. We have seen

recent interest in the method (e.g. White et al., 2018), and encourage its widespread adoption

in situations where a potentially vast number of subgroups exist.

4 Simulation Evidence and Applied Example

We next turn to illustrate a few of the concepts discussed above. In a simulation setting,

we compare two machine learning methods that have been used for identifying effect hetero-

geneity: Bayesian Additive Regression Trees (BART Hill, Weiss and Zhai, 2011), which do

not implement a split-sample and partialing-out approach, and Causal Forests (Athey, Tib-

shirani and Stefan Wager. Annals of Statistics, 2019) , which do. We find the latter returns

subgroup estimates notably less biased and confidence intervals that are more reliable.

We then include two applications, to an audit study (see Butler and Crabtree’s chapter

in this volume) and a conjoint analysis (See Bansak, et al.,’s chapter in this volume).

4.1 Simulation Evidence

We illustrate the basic insight, that the split-sample approach combined with partialing out,

can reduce bias and lead to more reliable inference. For this simulation, we generate a set of

three covariates, each independent and identically standard normal, denoted {Xi1, Xi2, Xi3}.

Denote Si = sign(Xi1 + Xi2), so it takes a value of +1 if the sum is positive and −1 if the
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sum is negative. We use two different simulation settings that vary with how we generate

the binary treatment variable Zi. In the first, we generate the treatment as a coin flip; in

the second, the treatment probability is a function of Si:

Setting 1: Zi|Si ∼ Bern(πi); πi = 0.5

Setting 2: Zi|Si ∼ Bern(πi); πi =
1

1 + exp(−Si)

In each setting, we generate the outcome as

Yi = Si + εi

where εi is itself standard normal and independent of the covariates. Note, importantly, that

the causal effect for each observation is zero: Zi does not enter the outcome. By this means,

any effect we find as significant is a false positive. We compare the performance of these

methods on estimation and inference on six different subgroups, given by

{Xi1 > 0, Xi1 ≤ 0, Xi2 > 0, Xi2 ≤ 0, Xi3 > 0, Xi3 ≤ 0}.

We implement two methods: the causal forest (CF ) of Athey, Tibshirani and Stefan

Wager. Annals of Statistics (2019) and Bayesian Additive Regression Trees (BART ), which

have been used in the past for subgroup analysis and causal estimation (e.g. Hill, Weiss and

Zhai, 2011; Green and Kern, 2012, with and without sample-splitting, respectively). The

methods are similar in that they both rely on a collection of trees to model the outcome

(see, e.g. Montgomery and Olivella, 2018; Hill and Jones., 2014), and are designed to identify

discontinuities in the data like those induced by Si. The methods differ fundamentally in

how they model the treatment effect: CF utilizes a split-sample strategy while BART uses

the full sample to model the outcome given the treatment and covariates. To recover the

treatment effect from BART , we have the method predict the outcome by the treatment and

covariates. We then estimate the treatment effect using these values, and use the posterior

to generate uncertainty.

The intuitive arguments given above suggest that BART will exhibit more bias than CF
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Figure 1: Subgroup Estimates. Estimated treatment effect by subgroup for BART (gray)
and causal forests (white). Both methods are an average of trees, and there are only three
variables, so both should perform well on this data. We see in Simulation 2 that causal
forests have only about half the bias of BART.

in this second setting for two reasons: first, it does not model the treatment as a function of

the covariates and it uses the same data to both model the outcome and generate estimates

and uncertainty intervals. CF , on the other hand, splits the data in half, uses half to

learn a forest structure to model the treatment effect, and the other to generate point and

uncertainty estimates. This second procedure should generate estimates with less bias and

better coverage, which we do indeed see.

We start with results on point estimation, presented in Figure 1. The top figure contains

the results from Simulation 1, where the treatment is a coin flip, and the bottom for where

the treatment probability varies with Si. Both methods perform well when the treatment
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Subgroup
1 2 3 4 5 6

Setting 1
BART 0.94 0.93 0.91 0.92 0.95 0.92

Causal Forest 0.94 0.87 0.89 0.90 0.93 0.92

Setting 2
BART 0.11 0.13 0.12 0.12 0.10 0.09

Causal Forest 0.59 0.63 0.61 0.61 0.63 0.55

Table 1: Coverage of 90% Uncertainty Intervals, by Subgroup. The first two rows
contain coverage results for the first simulation setting, the bottom two rows for the second
setting. We see that both methods achieve nominal coverage when the treatment probability
is homogenous. In the second setting, we see deterioration by both methods. The 90%
confidence intervals for causal forests still cover the truth about 60% of the time, while the
90% posterior interval only contains the truth about 10% of the time.

probability is constant across units. In the bottom figure, giving the results from the second

setting, we see that neither method is unbiased across subgroups. Causal forests, though,

have about half the bias of BART. Note that we are not advocating exclusively for the causal

forest algorithm per se, as algorithms and methods are constantly improving, but arguing

that the split-sample approach should be preferred in a subgroup analysis, as it leads to

more reliable inference.

Bias is not the whole story, though. We are focused on inference, asking whether we can

trust our confidence intervals from a subgroup analysis. The results are shown in Table 1.

The first two rows contain coverage results for the first simulation setting, the bottom two

rows for the second setting. We see that both methods achieve nominal coverage when the

treatment probability is homogenous. In the second setting, we see deterioration by both

methods. The 90% confidence intervals for causal forests still cover the truth about 60% of

the time, while the 90% posterior interval only contains the truth about 10% of the time. Put

differently, in this setting where there is no treatment effect, a 90% credible interval from

BART that does not engage in a split-sample approach will make a false positive about

90% of the time. For causal forests, using a confidence interval derived by a split-sample

approach, the false positive rate drops to about 40%–not perfect, but notably better.
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4.2 Applied Example: A Field Experiment with a Single, Binary

Treatment

In a recent audit study, Butler and Broockman (2011, see also Kalla, et al. in this volume)

emailed US state legislators, varying whether the e-mail is sent from a constituent with a

stereotypically black name (DeShawn) or white name (Jake); see the original paper for a

full description of the design. The outcome we consider is whether the email receives a

reply, where we take DeShawn as the treatment condition and Jake as the control condition.

We consider subgroups given by party of the legislator (Republican, Democrat) and the

legislator’s race (white, black, Hispanic). We omit any subgroups that do not include at

least 100 respondents, leaving us with the five main effects (Republican, Democrat, white,

black, Hispanic) and four interactive effects (white Republicans, white Democrats, black

Democrats, and Hispanic Democrats) for a total of 9 overlapping subgroups.3 In order to

adjust for making 9 comparisons, we use a Bonferroni correction. so we lower our p value

from 0.1 to p∗ = 0.1/9 = 0.011, which raises our critical value on the z-statistic on the

difference in means from 1.64 to 2.54. The key attributes of this process for pre-registering

is listing the number of subgroups, the threshold for dropping subgroups due to sample size,

and that a Bonferroni correction will be used.

We estimated the causal effect for each subgroup using a causal forest. The results by

subgroup can be found in Table 2. After the Bonferroni correction, we find three statistically

significant effects.

First, we find that Republicans are less likely to return an email from the DeShawn

condition. We also find a practically identical effect for white Republicans, largely because

97.4% of Republican legislators are white. While Republicans are less likely to respond to

DeShawn, we find no significant main effect for Democrats. We find, though, that black

Democratic legislators are more likely to respond to DeShawn than to Jake. Our results

correspond with what was found in the original study, with two exceptions. First, we find

that our Bonferroni correction eliminates one result that was found marginally significant

(p = 0.07) in the original study, that white Democratic legislators are more likely to respond

3Since the vast majority of Republicans are white, dropping small subgroups removes black and Hispanic
Republicans from our analysi.
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Estimate SE z n
Main Effects

Republican -0.06 0.02 -2.80 2170
Democrat 0.02 0.02 0.80 2689

Black 0.12 0.05 2.47 349
Latino 0.06 0.09 0.69 141
White -0.04 0.02 -2.33 4269

Interaction Effects: Republican ×
White -0.06 0.02 -2.85 2114

Interaction Effects: Democrat ×
Black 0.13 0.05 2.60 343

Latino 0.06 0.10 0.60 115
White -0.01 0.02 -0.46 2155

Table 2: Subgroup Effects from Audit Experiment. Estimated effects by subgroup for
the Butler and Broockman study. All subgroups with under 100 people were omitted. The
Bonferonni-corrected critical value for the z statistic is 2.54.

to Jake. Our findings on white Republicans are the same as those reported in the original

study, and we find the effect attributed to minority Democrats (blacks and Hispanics pooled)

to be driven by black legislators. The central methodological argument, though, is that p-

values should be adjusted when conducting multiple tests on subgroups.

4.3 Applied Example: A Conjoint Experiment with Multiple Treat-

ment Conditions

We next reanalyze data from a conjoint experiment. The original analysis considered the

effect of varying dimensions of international climate agreement on respondent preferences

given over three countries (UK, US, DE); see Bechtel and Scheve (2013) for a complete

discussion of the design. Proposals were varied by the expected costs, how many countries

participated, level of sanctions levied against violators, level of cuts required, the organization

monitoring compliance, and whether costs would be distributed proportional to historical

or current pollution rates. Moderators collected on respondents include gender, ideology,

age, country, and whether the respondent is likely to engage in reciprocity, as measured in a

two-player public goods game after the experiment.

We conduct our subgroup analysis in two stages: we use half the respondents to learn

interesting subgroups and the other half to test them. For the sake of preregistration, we
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would characterize the set of subgroups we are considering, register the seed we are using

to split respondents, the statistical method we are using to learn them in the first split, and

that we are Bonferroni correcting for the number selected in the second split. In particular,

we consider all treatment × moderator combinations, resulting in 368 possible subgroups

being assessed. We then separate the observations in two equal splits. On the first split,

we use the LASSO model of Belloni et al. (2017), which returns a subset of subgroups with

estimated non-zero effect (for an overview of variable selection methods, see Ratkovic and

Tingley (2017)). We then enter the selected subgroup covariates into a regression model on

the second split, returning standard errors clustered by respondent and Bonferroni-adjusting

the p-values for the number of selected covariates.

When constructing the covariates to measure a subgroup effect, we generate covariates

that capture the causal effect of a given variable in a given subgroup (see, e.g., Bansak, 2018,

for more). The covariates are constructed such that, within each subgroup, the treatment

group and control group are contrasted; outside the subgroup, the covariate is set to zero.

Specifically, let subgroups be denoted by indicator variables gis, s ∈ {1, 2, . . . , S} where

gis =

1; observation i in subgroup s

0 otherwise

(4)

Consider indicator variable for observation i, denoted Zik, k ∈ {1, 2, . . . , K}. Denote as Zks

the mean number of observations in subgroup s receiving treatment k. Then, our covariate

for estimating the effect of treatment k on subgroup s is then

xisk =

Zik − Zks; Zis = 1

0; gis = 0

(5)

This covariate is constructed such that the coefficient from regressing the outcome on this

covariate gives the difference in means in that subgroup. It does so by zeroing out obser-

vations out of the subgroup, but creating a contrast between the treated and control in

that subgroup. Note that this covariate could be constructed instead to contrast those in
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treatment condition k to some other condition. This covariate treats all the treatment levels

except for k as the baseline, so coefficients on this covariate should be interpreted as the

mean difference between the given treatment and the average of all other treatment levels

for this variable. For example, we find a coefficient on United.States × Cost: $267 of 0.029.

This should be interpreted as, among respondents in the US (the subgroup), treaties that

cost $267 per capita were less favored than the average across other possible levels by 2.9

percentage points.

Results from this procedure can be found in Table 3. The left column contains the results

from a regression on the selected covariates on the first split of the data; the right column

contains the same results from the second split. The righthand regression can be used for

unbiased estimation and valid inference, since it was estimated off different data than that

used to estimate the subgroups. The table reports point-estimates, standard errors clustered

by respondent, and significance based off Bonferroni-corrected p-values. We do not report

significance on the main effects, as captured by coefficients without interactions, since those

are presumed to have been pre-registered and tested as normal; the main effects are included

only as controls.

The discovered effects comport with intuition. In terms of main effects, we find more

expensive plans to be less popular. Similarly, only having rich countries pay, having fewer

participants, and higher sanctions are less preferred. In terms of subgroup effects, we use

the second column to assess statistical significance, but focus most on those estimates which

are stable and significant in both splits. Conservatives disfavor allowing Greenpeace to

model compliance, and those with a high reciprocity score do not want the lowest number

of participating countries (20). Respondents low on the environmentalist measure want no

sanctions, while those scoring higher on the environmentalist measure disfavor fewer countries

participating in the treaty, lower cuts, and their government monitoring the outcomes. The

authors included a series of ad-hoc, interactive models in the supplemental materials of

the original study, suggesting that they were interested in uncovering subgroup effects. Our

primary argument here is that uncovering these effects should be done in a systematic fashion,

in this setting using a machine learning method on half the data and a regression on uncovered

effects in the other. Doing so helps to ensure valid inference on subgroup effects.
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5 Conclusion

The subgroup analysis has remained a difficult part of experimental analysis, specifically

because it can too-easily brush up against data dredging and p-hacking. At the same time,

potential insights in experimental data should not be left unreported simply because they

were not specified in advance.

Instead, our focus has been on reviewing and presenting a set of statistically rigorous con-

cepts and methods with which we can conduct inference on subgroup effects. The methods,

as we discuss, offer a higher bar of proof than a pre-specified hypothesis. The split-sample

approach cuts the data we are testing the hypothesis on in half, where we use half the data

to find promising hypotheses and the other half to test them. This leads to a decrease in

power, but this decrease is the necessary consequent of not pre-specifying and pre-registering

the hypotheses. Similarly, the false discovery rate may find promising patterns in the data,

but the approach does not allow for inference on any particular hypothesis. These costs,

though, allow for statistical guarantees that can help convey nuance in experimental data

that would otherwise be ignored.

Looking forward, several open questions remain. First, methods for conducting subgroup

analysis in more complex designs, like instrumental variables, mediation, and regression dis-

continuity designs are still open questions. Similarly, experiments with time-varying treat-

ments and continuous treatments raise even more complex issues. In this chapter, we tried

to look ahead past the current methods of the day for underlying principles: regardless of

how a subgroup analysis is performed, and on what design, the split-sample approach and

partialing out covariates will serve as a common thread through these analyses.
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Dependent variable: Support of Climate Change Treaty

(1) (2)

Main Effects
Cost: $53 0.118 (0.015) 0.127 (0.015)
Cost: $ 107 0.079 (0.009) 0.066 (0.008)
Cost: $ 213 −0.092 (0.009) −0.100 (0.008)
Cost: $267 −0.096 (0.015) −0.120 (0.015)
Only rich countries pay −0.051 (0.008) −0.049 (0.007)
20 of 192 participants −0.010 (0.012) −0.021 (0.012)
160 of 192 participants 0.020 (0.014) 0.028 (0.014)
Sanctions: $11 0.026 (0.009) 0.044 (0.009)
Sanctions: $43 −0.022 (0.008) −0.025 (0.008)
Indep. Commission Monitors 0.034 (0.007) 0.037 (0.007)
Interaction Effects
Female × Cost: $53 0.029 (0.014) 0.050∗∗∗ (0.014)
Female × Cost: $267 −0.047∗∗ (0.014) −0.026 (0.013)
Female × 80% of emissions cut 0.018 (0.009) 0.004 (0.010)
Female × Sanctions: $11 0.029 (0.012) 0.016 (0.012)
Conservative × Greenpeace Monitors −0.079∗∗∗ (0.012) −0.074∗∗∗ (0.011)
Liberal × 160 of 192 participants 0.020 (0.013) 0.004 (0.012)
Liberal × Your government monitors −0.015 (0.011) −0.001 (0.011)
Reciprocity: high × Cost: $53 0.021 (0.014) 0.002 (0.014)
Reciprocity: high × Cost: $267 −0.020 (0.014) −0.010 (0.013)
Reciprocity: high × 160 of 192 participants 0.012 (0.013) 0.021 (0.013)
Reciprocity: high × 20 of 192 participants −0.056∗∗∗ (0.013) −0.040∗∗ (0.013)
Reciprocity: high × 80% of emissions cut 0.020 (0.010) 0.033∗∗ (0.010)
Env: low × Cost: $53 0.039 (0.014) 0.050∗∗∗ (0.014)
Env: low × Sanctions: None 0.051∗∗∗ (0.011) 0.047∗∗∗ (0.011)
Env: low × Sanctions: $43 −0.017 (0.013) −0.046∗∗∗ (0.013)
Env: high × 160 of 192 participants 0.043∗∗ (0.014) 0.036 (0.014)
Env: high × 20 of 192 participants −0.078∗∗∗ (0.013) −0.084∗∗∗ (0.014)
Env: high × 80% of emissions cut 0.005 (0.010) 0.009 (0.010)
Env: high × 40% of emissions cut −0.041∗∗∗ (0.008) −0.042∗∗∗ (0.008)
Env: high × Your government monitors −0.038∗∗ (0.012) −0.045∗∗∗ (0.012)
United.Kingdom × Cost: $53 0.037 (0.015) 0.005 (0.016)
United.Kingdom × Cost: $267 −0.071∗∗∗ (0.017) −0.042 (0.017)
United.States × Cost: $267 −0.064∗∗∗ (0.015) −0.029 (0.016)
United.States × Only rich countries pay −0.041∗ (0.014) −0.033 (0.014)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; p-values Bonferroni corrected

Table 3: Split-Sample Estimates from Conjoint Analysis. Results from the split-
sample subgroup analysis from the conjoint experiment in Bechtel and Scheve (2013), with
standard errors in parantheses. In the first split of the data, the covariates above were
selected using a LASSO. These covariates were then entered into a linear model using the
second split. Results are from the linear model in the first split (left) and second (right).
Standard errors clustered by respondent.

.
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