
Relaxing Assumptions, Improving Inference:
Integrating Machine Learning and the Linear

Regression

August 31, 2022

Abstract

Valid inference in an observational study requires a correct control specifi-
cation, but a correct specification is never known. I introduce a method that
constructs a control vector from the observed data that, when included in a lin-
ear regression, adjusts for several forms of bias. These include: nonlinearities
and interactions in the background covariates, biases induced by heterogeneous
treatment effects, and specific forms of interference. The first is new to political
science, that latter two are original contributions. I incorporate random effects,
a set of diagnostics, and robust standard errors. With additional assumptions,
the estimates allow for causal inference on both binary and continuous treat-
ment variables. In total, the model provides a flexible means to adjust for biases
commonly encountered in our data, makes minimal assumptions, returns efficient
estimates, and can be implemented through publicly available software.
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1 Introduction

The standard linear regression is the field’s most commonly encountered quantitative tool,

used to estimate effect sizes, adjust for background covariates, and conduct inference. At

the same time, the method requires a set of assumptions that have been long-acknowledged

as problematic (e.g. Lenz and Sahn, 2021; Samii, 2016; Achen, 2002; Leamer, 1983). The

fear that quantitative inference will reflect these assumptions, rather than the design of the

study and the data, has led our field to explore alternatives including estimation via machine

learning (e.g., Hill and Jones, 2014; Grimmer, Messing and Westwood, 2017; Beck, King and

Zeng, 2000; Beck and Jackman, 1998) and identification using the analytic tools of causal

inference (e.g. Acharya, Blackwell and Sen, 2016; Imai et al., 2011).

I integrate these two literatures tightly, formally, and practically, with a method and

associated software that can improve the reliability of quantitative inference in political

science and the broader social sciences. In doing so, I make two contributions. First, I

introduce to political science the concepts and strategies necessary to integrate machine

learning with the standard linear regression model (Athey, Tibshirani and Wager, 2019;

Chernozhukov et al., 2018). Second, I extend this class of models to address two forms of

bias of concern to political scientists. Specifically, I adjust for a bias induced by unmodeled

treatment effect heterogeneity highlighted by Aronow and Samii (2016). In correcting this

bias, and under additional assumptions on the data, the proposed method allows for causal

effect estimation whether the treatment variable is continuous or binary. I also adjust for

biases induced by exogenous interference, which occurs when an observation’s outcome or

treatment is impacted by the characteristics of other observations (Manski, 1993).
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The goal is to allow for valid inference that does not rely on a researcher-selected control

specification. The proposed method, as with several in this literature, uses a machine learning

method to adjust for background variables while returning a linear regression coefficient

and standard error for the treatment variable of theoretical interest. Following the Double

Machine Learning approach of Chernozhukov et al. (2018), my method implements a split-

sample strategy. This consists of, first, using a machine learning method on one part of the

data to construct a control vector that can adjust for nonlinearities and heterogeneities in the

background covariates as well as the two biases described above. Then, on the remainder of

the data, this control vector is included in a linear regression of the outcome on the treatment.

The split-sample strategy serves as a crucial guard against over-fitting. By alternating which

subsample is used for constructing control variables from the background covariates and

which subsample is used for inference, and then aggregating the separate estimates, the

efficiency lost by splitting the sample can be regained. I illustrate this on experimental data,

showing that the proposed method generates point estimates and standard errors no different

than a full-sample linear regression model.

My primary audience is the applied researcher currently using a linear regression for in-

ference, but who may be unsettled by the underlying assumptions. I develop the method

first as a tool for descriptive inference, generating a slope coefficient and a standard error on

a variable of theoretical interest but relying on machine learning to adjust for background

covariates. I then discuss the assumptions necessary to interpret the coefficient as a causal

estimate. In order to encourage adoption of the proposed method, software for implement-

ing the proposed method and diagnostics described in this manuscript is available on the

Comprehensive R Archive Network in the package PLCE.
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2 Implications and Applications of the Proposed Method

Quantitative inference in an observational setting requires a properly specified model, mean-

ing the control variables must be observed and entered correctly by the researcher, in order

to recover an unbiased estimate of the effect of interest. A correct specification, of course, is

never known, raising concerns over “model-dependent” inference (King and Zeng, 2006).

Contrary advice on how to specify controls in a linear regression remains unresolved.

This advice ranges from including all the relevant covariates but none of the irrelevant ones

(King, Keohane and Verba, 1994, Sec. 5.2–5.3), which states rather than resolves the issue;

including at most three variables (Achen, 2002); or at least not all of them (Achen, 2005); or

maybe none of them (Lenz and Sahn, 2021). Others have advocated for adopting machine

learning methods including neural nets (Beck, King and Zeng, 2000), smoothing splines (Beck

and Jackman, 1998), nonparametric regression (Hainmueller and Hazlett, 2013), tree-based

methods (Hill and Jones, 2014; Montgomery and Olivella, 2018), or an average of methods

(Grimmer, Messing and Westwood, 2017).

None of this advice has found wide use. The advice on the linear regression is largely

untenable, given that researhers normally have a reasonable idea of which background covari-

ates to include, but cannot guarantee that an additive, linear control specification is correct.

Machine learning methods offer several important uses, including prediction (Hill and Jones,

2014) and uncovering nonlinearities and heterogeneities (Beck, King and Zeng, 2000; Imai

and Ratkovic, 2013). Estimating these sorts of conditional effects and complex models are

useful in problems that involve prediction or discovery. For problems of inference, where the

researcher desires a confidence interval or p-value on a regression coefficient, these methods
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will generally lead to invalid inference (a point I return to below in Section 4 and illustrate

in Section 8).

Providing a reliable and flexible means of controlling for background covariates, and

clarifying when and whether the estimated effect admits a causal interpretation, is essential

to the accumulation of knowledge in our field. I provide such a strategy here.

2.1 Turning Towards Machine Learning

Conducting valid inference with a linear regression coefficient without specifying how the

control variables enter the model has been long-studied in the fields of econometrics and

statistics (See, e.g., Robinson, 1988; Newey, 1994; Bickel et al., 1998; van der Vaart, 1998,

esp. ch. 25.). Recent methods have brought these theoretical results to widespread attention

by combining machine learning methods to adjust for background covariates with a linear

regression for the variable of interest, particularly the Double Machine Learning approach

of Chernozhukov et al. (2018) and the Generalized Random Forest of Athey, Tibshirani and

Wager (2019). I work in this same area, introducing key concepts to political science.

While well-developed in cognate fields, political methodologists have put forth several ad-

ditional critiques of linear regression left unaddressed by these aforementioned works. The

first critique comes from King (1990) in the then-nascent subfield of political methodology.

In a piece both historical and forward-looking, he argued that unmodeled geographic in-

terference was a first-order concern of the field. More generally, political interactions are

often such that interference and interaction across observations is the norm. Most quantita-

tive analyses simply ignore interference. Existing methods that do address it rely on strong

modeling assumptions requiring, for example, that interference is being driven by known co-
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variates, like ideology (Hall and Thompson, 2018); or that observations only impact similar

or nearby observations either geographically or over a known network (Ward and O’Loughlin,

2002; Ripley, 1988; Sobel, 2006; Aronow and Samii, 2017); and these models only allow for

moderation by covariates specified by the researcher. I offer the first method that learns and

adjusts for general patterns of exogenous interference (See Section 5.2 for a full discussion).

The second critique emphasizes the limits on using a regression for causal inference in

observational studies (see, e.g. Angrist and Pischke, 2010, Sec 3.3.1). From this approach, I

adopt three concerns. The first is a careful attention to modeling the treatment variable. The

second is precision in defining the parameter of interest as an aggregate of observation-level

effects. Aronow and Samii (2016) show that a correlation between treatment effect hetero-

geneity and variance in the treatment assignment will cause the linear regression coefficient

to be biased in estimating the causal effect—even if the background covariates are included

properly. I offer the first method that explicitly adjusts for this bias. Third, I provide a set

of assumptions that will allow for a causal interpretation of the estimate returned by the

proposed method (see Section 6).

2.2 Practical Considerations of the Proposed Method

The major critique of the linear regression, that its assumptions are untenable, is hardly new.

Despite this critique, the linear regression has several positive attributes worthy of preser-

vation. First is its transparency and ease of use. The method, its diagnostics, assumptions,

and theoretical properties are well-understood, implemented in commonly available software,

and allow for easy inference. Coefficients and standard errors can be used to generate confi-

dence intervals and p-values, and a statistically significant result provides a necessary piece
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of evidence that a hypothesized association is present in the data. Importantly, the proposed

method maintains these advantages.

I illustrate these points in a simulation study designed to highlight blind spots of exist-

ing methods. I then reanalyze experimental data from Mattes and Weeks (2019), showing

that if the linear regression model is in fact correct, my method neither uncovers spurious

relationships in the data nor comes at the cost of inflated standard errors. In the second

application, I illustrate how to use the method with a continuous treatment. Enos (2016)

was forced to dichotomize a continuous treatment, distance from public housing projects,

in order to estimate the causal effect of racial threat. To show his results were not model-

dependent, he presented results from dichotomizing the variable at ten different distances.

The proposed method handles this situation more naturally, allowing a single estimate of

the effect of distance from housing projects on voter turnout.

3 Anatomy of a Linear Regression

My central focus is in improving estimation and inference on the marginal effect, which is the

average effect of a one unit move in a variable of theoretical interest ti on the predicted value

of an outcome yi, after adjusting for background covariates xi.
1 I will denote the marginal

effect as θ.

Estimation of the marginal effect is generally done with a linear regression,

yi = θti + x>i γ + ei; E(ei|xi, ti) = 0. (1)

1The marginal effect is sometimes referred to as the average partial effect.
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where the marginal effect θ is the target parameter, meaning the parameter on which the

researcher wishes to conduct inference.

I will refer to terms constructed from the background covariates xi and entered into the

linear regression as control variables. For example, when including a square term of the third

variable x3i in the linear regression, the background covariate vector is xi but the control

vector is now [x>i , x
2
3i]
>. I will reserve γ for slope parameters on control vectors.

Inference on a parameter is valid if its point estimate and standard error can be used

to construct confidence intervals and p-values with the expected theoretical properties. For-

mally, θ̂ and its estimated standard deviation σ̂θ̂ allow for valid inference if, for any θ,

√
n

(
θ̂ − θ
σ̂θ̂

)
 N (0, 1) (2)

The limiting distribution of a statistic is the distribution to which its sampling distribu-

tion converges (see Wooldridge, 2013, App. C12), so in the previous display the limiting

distribution of the z-statistic on the left is a standard normal distribution.

The remaining elements of the model, the control specification (x>i γ) and the distribution

of the error term, are the nuisance components, meaning they are not of direct interest but

need to be properly adjusted for in order to allow valid inference on θ. The component

with the control variables is specified, in that its precise functional form is assumed by the

researcher.

Heteroskedasticity-consistent (colloquially, “robust”) standard errors allow valid inference

on θ without requiring the error distribution to be normal, or even equivariant.2 In this sense,

2For more on the use and misuse of heteroskedasticity-consistent standard errors, Freedman (2006) notes
that they are not useful if the model is misspecified, King and Roberts (2015) propose using disagreement
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the error distribution is unspecified. This insight proves critical to the proposed method:

valid inference in a statistical model is possible even when components of the model are

unspecified.3

In statistical parlance, the linear regression model fit with heteroskedasticity-consistent

standard errors is an example of a semiparametric model, as it combines both a specified

component (θti + x>i γ) and an unspecified component, the error distribution.

This chain of reasoning then begs the question, can even less be specified? And, does

the estimated coefficient admit a causal interpretation? I turn to the first question and then

address the second in Section 6.

4 Moving Beyond Linear Regression

In moving beyond linear regression, I utilize a machine learning method to construct a control

vector that can be included in a linear regression of the outcome on the treatment. This

vector will allow for valid inference on θ even in the presence of unspecified nonlinearities and

interactions in the background covariates. This section relies on the development of Double

Machine Learning in Chernozhukov et al. (2018) and the textbook treatment of van der

Vaart (1998). The presentation remains largely informal, with technical details deferred to

Appendix A. I then extend this approach in Section 5.

between analytic and heteroskedasticity-consistent as a model diagnostic, but note Aronow (2016)’s critique
of this approach as over-reliant on modeling assumptions. My view aligns most closely with Aronow (2016)
and derives from the general approach in van der Vaart (1998).

3Unspecified does not mean arbitrary. Heteroskedasticity-consistent standard errors require that the
residuals be mean zero given the covariates and treatment and that the estimated residuals follow a central
limit theorem; see White (1980, Assumptions 2 and 3). This includes distributions commonly encountered
in observational data, while excluding fat-tailed distributions like the Cauchy.
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4.1 The Partially Linear Model

Rather than entering the background covariates in an additive, linear fashion, they could

enter through unspecified functions, f, g:4

yi = θti + f(xi) + ei; E(ei|ti,xi) = 0 (3)

ti = g(xi) + vi; E(vi|ti,xi) = E(eivi|xi) = 0. (4)

The resulting model is termed the partially linear model, as it is still linear in the treat-

ment variable but the researcher need not assume a particular control specification. This

model subsumes the additive, linear specification, but the functions f, g also allow for non-

linearities and interactions in the covariates.

4.2 Semiparametric Efficiency

With linear regression, where the researcher assumes a control specification, the least squares

estimates are the uniformly minimum variance unbiased estimate (e.g. Wooldridge, 2013, Sec.

2.3). This efficiency result does not immediately apply to the partially linear model, as a

particular form for f, g is not assumed in advance but instead learned from the data. We

must instead rely on a different conceptualization of efficiency: semiparametric efficiency.

An estimate of θ in the partially linear model is semiparametrically efficient if, first, it

allows for valid inference on θ and, second, its variance is asymptotically indistinguishable

from an estimator constructed from the true, but unknown, nuisance functions f, g. Es-

4While the covariates can enter the model nonlinearly, the estimate will still be linear in the sense of
being additive in the outcome variable (Wooldridge, 2013, Sec. 2.4.).
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tablishing this property proceeds in two broad steps.5 The first step involves constructing

an estimate of θ assuming the true functions f, g were known. This estimate is infeasible,

since it is constructed from unknown functions. The second step then involves providing

assumptions and an estimation strategy such that the feasible estimate constructed from

the estimated functions f̂ , ĝ share the same limiting distribution as the infeasible estimate

constructed from f, g.

For the first step, consider the reduced form model that combines the two models in

Equations 3-4,

yi = θti + [f(xi), g(xi)]γ + ei. (5)

If f, g were known, θ could be estimated efficiently using least squares.6 The estimate, θ̂ will

be efficient and allow for valid inference on θ.

Following Stein (1956), we would not expect any feasible estimator to outperform this in-

feasible estimator, so its limiting distribution is termed the semiparametric efficiency bound.

With this bound established, I now turn to generating a feasible estimate that shares a

limiting distribution with this infeasible estimate.

5Appendix A contains a complete, self-contained technical discussion.
6There are often multiple, and asymptotically equivalent, ways to estimate θ (see, e.g. Robins et al., 2007).

In their Double Machine Learning algorithm, Chernozhukov et al. (2018) propose regressing yi − f(xi) on
ti−g(xi), whereas I instead estimate θ from the reduced form model. The two are asymptotically equivalent,
but I favor the reduced form approach as it more easily incorporates intuitions and diagnostics from linear
regression.
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4.3 Double Machine Learning for Semiparametrically Efficient Es-

timation

Estimated functions f̂ , ĝ, presumably estimated using a machine learning method, can be

used to construct and enter control variables into a linear regression as

yi = θti + [f̂(xi), ĝ(xi)]γ + ei. (6)

Semiparametric efficiency can be established by characterizing and eliminating the gap be-

tween the infeasible model in Equation 5 and the feasible model in Equation 6. I do so by

introducing approximation error terms

∆f̂ ,i = f̂(xi)− f(xi); ∆ĝ,i = ĝ(xi)− g(xi), (7)

that capture the distance between the true functions f, g and their estimates f̂ , ĝ at each xi.

Given these approximation errors, Equation 6 can be rewritten in the familiar form of a

measurement error problem (Wooldridge, 2013, Ch. 9.4), where the estimated functions f̂ , ĝ

can be thought of as “mismeasuring” the true functions f, g:

yi = θti + [f(xi), g(xi)]γ1 + [f̂(xi)− f(xi), ĝ(xi)− g(xi)]γ2 + ei (8)

yi = θti + [f(xi), g(xi)]γ1 + [∆f̂ ,i,∆ĝ,i]γ2 + ei (9)

Establishing semiparametric efficiency of a feasible estimator, then, consists of establishing

a set of assumptions and an estimation strategy that leaves the approximation error terms

11



asymptotically negligible.

There are two pathways by which the approximation error terms may bias an estimate.

The first is if the approximation errors do not tend to zero. Eliminating this bias requires

that the approximation errors vanish asymptotically, specifically at an n1/4 rate.7 Though

seemingly technical, this assumption is actually liberating. Many modern machine learning

methods utilized in political science provably achieve this rate (Chernozhukov et al., 2018),

including random forests (Hill and Jones, 2014; Montgomery and Olivella, 2018), neural

networks (Beck, King and Zeng, 2000), and sparse regression models (Ratkovic and Tingley,

2017). This assumption allows the researcher to condense all the background covariates into

a control vector constructed from f̂ , ĝ, where these functions are estimated via a flexible

machine learning method. Any nonlinearities and interactions in the background covariates

are then learned from the data rather than specified by the researcher.

Eliminating the second pathway requires that any correlation between the approximation

errors ∆f̂ ,i,∆ĝ,i and the error terms ei, vi tend to zero.8 Doing so requires addressing a subtle

aspect of the approximation error: the estimates f̂ , ĝ are themselves functions of ei, vi, as

they are estimates constructed from a single observed sample. Even under the previous

7Formally, this requires

n1/4

√√√√ 1

n

n∑
i=1

∆2
f̂ ,i

u→ 0; n1/4

√√√√ 1

n

n∑
i=1

∆2
ĝ,i

u→ 0, (10)

where
u→ denotes converges uniformly, which is the notion of convergence needed for complex, nonparametric

functions. We provide full details in Appendix A.
8Again, details appear in Appendix A, but valid inference will require that the terms

√
n

{
1

n

n∑
i=1

∆f̂ ,iei

}
u→ 0;

√
n

{
1

n

n∑
i=1

∆f̂ ,ivi

}
u→ 0 (11)

as well as corresponding terms with ∆ĝ,i.
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Algorithm 1: The Double Machine Learning Algorithm

Outcome, treatment, and covariates {yi, ti,xi}ni=1 Result: for r in 1 to R do
Split the sample in half, generating S1,S2.
for j in 1 to 2 do

Estimate f, g in subsample Sj using a machine learning method.

Regress yi − f̂(xi) on ti − ĝ(xi) using data from the other subsample.
end

Aggregate the point estimate, θ̂ and standard error, σ̂θ̂, over splits.
end

Table 1: The Double Machine Learning Algorithm of Chernozhukov et al. (2018).
The Double Machine Learning algorithm combines machine learning, to learn how the co-
variates enter the model, with a regression for the coefficient of interest. Each of the two
steps is done on a separate subsample the data (sample-splitting), the roles of the two sub-
samples is swapped (cross-fitting), and the estimate results from aggregating over multiple
cross-fit estimates (repeated cross-fitting). The proposed method builds on these strategies,
while adjusting for several forms of bias ignored by the Double Machine Learning strategy.

assumption on the convergence rate of f̂ , ĝ, this bias term may persist.

The most elegant, and direct, way to eliminate this bias is to employ a split-sample

strategy, as shown in Figure 1.9 First, the data is split in half into subsamples denoted S1

and S2 of size n1 and n2 such that n1 + n2 = n. Data from S1 is used to learn f̂ , ĝ and

data from S2 to conduct inference on θ. Since the nuisance functions are learned on data

wholly separate from that on which inference is conducted, this bias term tends to zero. The

resultant estimate is semiparametrically efficient , under the conditions given in in 4.3.

Sample-splitting raises real efficiency concerns, as it only uses half the data for inference

and thereby inflates standard errors by
√

2 ≈ 1.4. In order to restore efficiency, Double

Machine Learning implements a cross-fitting strategy, whereby the roles of the subsamples

S1,S2 are swapped and the estimates combined. Repeated cross-fitting consists of aggregating

estimates over multiple cross-fits, allowing all the data to be used in estimation and returning

9See Fong and Tyler (2021); Ratkovic (2021) for contemporary works in political science exploring a
split-sample strategy.
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results that are not sensitive to how the data is split. A description of the algorithm appears

in Table 1.

4.4 Constructing Covariates and Second-Order Semiparametric

Efficiency

My first advance over the Double Machine Learning strategy of Chernozhukov et al. (2018) is

constructing a set of covariates that will further refine the estimates of the nuisance functions.

Doing so gives more assurance that the method will, in fact, adjust for the true nuisance

functions f, g.

In order to do so, consider the approximation

f̂(xi) ≈ f(xi) + U>f,iγf ; ĝ(xi) ≈ g(xi) + U>g,iγg (12)

or, equivalently,

∆f̂ ,i ≈ U>f,iγf ; ∆ĝ,i ≈ U>g,iγg (13)

for some vector of parameters γf , γg.

These new vectors of control variables Uf,i, Ug,i capture the fluctuations of the estimated

functions f̂ , ĝ around the true values, f, g. The expected fluctuation of an estimate around

its true value is measured by its standard error (Wooldridge, 2013, Sec. 2.5), so I construct

these control variables from the variance matrix of the estimates themselves. Denoting as

f̂(X), ĝ(X) the vectors of estimated nuisance component f̂ , ĝ, I first construct the variance
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matrices V̂ar(f̂(X)) and V̂ar(ĝ(X)). In order to summarize these matrices, I construct

the control vectors Ûf̂ ,i, Ûĝ,i from principal components of the square root of the variance

matrices.10

Including these constructed covariates as control variables offers advantages both prac-

tical and theoretical. As a practical matter, augmenting the control set f̂ , ĝ with the con-

structed control vectors Ûf̂ ,i, Ûf̂ ,i helps guard against misspecification or chance error in the

estimates f̂ , ĝ, adding an extra layer of accuracy to the estimate and making it more likely

that the method will properly adjust for f, g.

As a theoretical matter, the method is an example of a second-order semiparametrically

efficient estimator. Double Machine Learning is first-order semiparametrically efficient as

it only adjusts for the conditional means f̂ , ĝ. By including the estimated controls f̂ , ĝ but

also principal components Uf̂ ,i, Uĝ,i constructed from the variance (the second moment, see

Wooldridge (2013) App. D.7), the estimates gain an extra order of efficiency and return

a second-order semiparametrically efficient estimate.11 The theoretical gain is that second-

order efficiency requires only an n1/8 order of convergence on the nuisance terms rather than

n1/4. While seemingly technical, this simply means that the method allows valid inference on

θ while demanding less accuracy from the machine learning method estimating the nuisance

terms. At the most intuitive level, including these additional control vectors make it more

likely that the nuisance terms will be captured.

10For technical and implementation details, including how this approach integrates with the split-sample
strategy, see Appendices A and D-E.

11For more on second- and higher-order efficiency, see (van der Vaart, 2014; Li et al., 2011; Robins et al.,
2008; Dalalyan, Golubev and Tsybakov, 2006, esp. Eq. 4.). While this theoretical literature is developed, I
am the first to incorporate these ideas into software and allow their use in an applied setting.
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5 Improving on the Partially Linear Model

Double Machine Learning addresses a particular issue, namely learning how the background

covariates enter the model. Several issues of interest to political scientists remain unad-

dressed. I turn to these next, which comprise my central contributions.

5.1 Adjusting for Treatment Effect Heterogeneity Bias

Aronow and Samii (2016) show that the linear regression estimate of a coefficient on the

treatment variable is biased for the marginal effect. The bias emerges through insufficient

care in modeling the treatment variable and heterogeneity in the treatment effect, and the

authors highlight this bias as a key difference between a linear regression estimate and a

causal estimate.

To see this bias, denote as θi the effect of the treatment on the outcome for observation

i, such that the marginal effect is defined as θ = E(θi). To simplify matters, presume the

true functions f, g are known, allowing a regression to isolate as-if random fluctuations of

ei, vi. Incorporating the heterogeneity in θi into the partially linear model gives

yi = tiθi + [f(xi), g(xi)]γ + ei (14)

= tiθ + ti(θi − θ) + [f(xi), g(xi)]γ + ei. (15)

The unmodeled effect heterogeneity introduces an omitted variable, ti(θi− θ), which gives a
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bias of12

E(θ̂ − θ) =
E {Cov(ti, ti(θi − θ)|xi)}

E {Var(ti|xi)}
(16)

=
E(v2

i (θi − θ))
E(v2

i )
(17)

which I will refer to as treatment effect heterogeneity bias.

Inspection reveals that either one of two conditions are sufficient to guarantee that the

treatment heterogeneity variance bias is zero. The first occurs when there is no treatment

effect heterogeneity (θi = θ for all observations), the second when there is no treatment as-

signment heteroskedasticity (E(v2
i ) is constant across observations). As observational studies

rarely justify either assumption (see Samii, 2016, for a more complete discussion), researchers

are left with a gap between the marginal effect θ and the parameter estimated by the partially

linear model.

I will address this form of bias through modeling the random component in the treatment

assignment. As with modeling the conditional means through unspecified nuisance functions,

I will introduce an additional function that will capture heteroskedasticity in the treatment

variable.

5.2 Interference and Group-Level Effects

The proposed method also adjusts for group-level effects and interference. For the first,

researchers commonly encounter data with some known grouping, say at the state, province,

or country-level. To accommodate these studies, I incorporate random effect estimation

12See Wooldridge (2013) Eq. 5.4.
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into the model. The proposed method also adjusts for interference, where observations may

be impacted by observations that are similar in some regards (“homophily”) or different in

some regards (“heterophily”). For example, observations that are geographically proximal

may behave similarly (Ward and O’Loughlin, 2002; Ripley, 1988), actors may be connected

via a social network (Sobel, 2006; Aronow and Samii, 2017), or social actors may react to

ideologues on the other end of the political divide (Hall and Thompson, 2018). In each

setting, some part of an observation’s outcome may be attributable to the characteristics of

other observations.

Existing approaches require a priori knowledge over what variables drive the interference

as well as how the interference affects both the treatment variable and the outcome. Instead,

I use a machine learning method to learn the type of interference in the data: what variables

are driving interference, and in what manner.

The problem involves two components: a measure of proximity and an interferent. The

proximity measure addresses which variables are driving how close two observations are.13

In the spatial setting, for example, these may be latitude and longitude. Alternatively,

observations closer in age may behave similarly (homophily) or observations with different

education levels may behave similarly (heterophily). The strength of the interference is

governed by a bandwidth parameter, which characterizes the radius of impact of proximal

observations on a given observation. For example, with a larger bandwidth, interference may

be measurable between people with a ten-year age range, but for a narrower bandwidth, it

may only be discernible within a three-year range. The interferent is the variable that

impacts other observations. For example, the treatment level of a given observation may be

13Manski (2013, 1993) refers to this as the reference group.
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driven in part by the income level (the interferent) of other observations with a similar age

(the proximity measure).

The method learns and adjusts for two types of interference: that driven entirely by

covariates and the effect of one observations’ treatment on other observations’ outcomes. For

example, if the interference among observations is driven entirely by exogenous covariates,

such as age or geography, the method allows for valid inference on θ. Similarly, if there

are spillovers such that one observation’s treatment affects another’s outcome, as with, say,

vaccination, the method can adjust for this form of spillover (e.g. Hudgens and Halloran,

2008).14

The proposed method does not adjust for what Manski (1993) terms endogenous in-

terference, which occurs when an observation’s outcome is driven by the behavior of some

group that includes itself. This form of interference places the outcome variable on both

the lefthand- and righthand-side of the model, inducing a simultaneity bias (see Wooldridge,

2013, ch.16). Similarly, the method cannot adjust for the simultaneity bias in the treatment

variable. The third form of interference not accounted for for is when an observation’s treat-

ment is affected by its own or others’ outcomes, a form of post-treatment bias (Acharya,

Blackwell and Sen, 2016).

6 Relation to Causal Effect Estimation

I have developed the method so far as a tool for descriptive inference, estimating a slope

term on a treatment variable of interest. If the data and design allow, the researcher may

be interested in a causal interpretation of her estimate.

14In this situation, the proposed method estimates what is termed the “direct effect” of the treatment,
since the method adjusts for indirect effects that come from other observations.
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Generating a valid causal effect estimate of the marginal effect requires two steps beyond

the descriptive analysis. First, the estimate must be consistent for a parameter constructed

from an average of observation-level causal effects. Correcting for the treatment effect het-

erogeneity bias described in Section 5.1 accomplishes this. Doing so allows for estimation of

causal effects regardless of whether the treatment variable is binary or continuous. Second,

the data must meet conditions on the data that allow identification of the causal estimate.

I discuss the assumptions here, with a formal presentation in Appendix B.

First, a stable value assumption requires a single version of each level of the treatment.15

Most existing studies include a non-interference assumption in this assumption, which I

am able to avoid due to the modelling of interference described in Section 5.2. Second, a

positivity assumption requires that the treatment assignment be non-deterministic for every

observation. These first two assumptions are standard. The first is a matter of design and

conceptual clarity, while the accompanying software implements a diagnostic for the second;

see Appendix C.

The third assumption, the ignorability assumption, assumes that the observed observation-

level covariates are sufficient to break confounding (Sekhon, 2009, p. 495) such that treat-

ment assignment can be considered as-if random for observations with the same observation-

level covariate profile. Implicit in this assumption is the absence of interference. The pro-

posed method relaxes this assumption, allowing for inference in the presence of interference.

Even after adjusting for interference, simultaneity bias can still invalidate the ignorability

assumption (see Section 5.2). This bias occurs when an observation’s treatment is impacted

15The issue is one of conceptual clarity and must be handled by the researcher. For example, taking as
the treatment variable “years of education” ignores both the quality of the schools and performance of the
student. For more, see Imbens and Rubin (2015, Secs. 1.2, 1.6.2).
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by other observations’ treatment level, or when there is a direct effect of any outcome on the

treatment. While the proposed method’s associated software implements a diagnostic to as-

sess the sensitivity of the estimates to these assumptions (see Appendix C), their plausibility

must be established through substantive knowledge by the researcher.

These assumptions clarify the nature of the estimand. By assuming the covariates adjust

for indirect effects that may be coming from other observations, the proposed method esti-

mates an average direct effect of the treatment on the outcome. Since the proposed method

adjusts for other observations’ treatments at their observed level, it recovers an average con-

trolled direct effect. The estimated causal effect is then the average effect of a one-unit move

of a treatment on the outcome, given all observations’ covariates and fixing their treatments

at the realized value.

7 The Proposed Model

The proposed model expands the partially linear model to include exogenous interference,

heteroskedasticity in the treatment assignment mechanism, and random effects. I refer to it

as the partially linear causal effect (PLCE) model since, under the assumptions in Section

6, it returns a causal estimate of the treatment on the outcome.

The treatment and outcome models for the proposed method are

yi = θti + f(xi) + φy(xi,X−i, t−i,hy) + aj[i] + ei (18)

ti = g1(xi) + g2(xi,X−i)ṽi + φt(xi,X−i, t−i,ht) + bj[i] + vi (19)
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with the following conditions on the error terms

aj
i.i.d.∼ N (0, σ2

a); bj
i.i.d.∼ N (0, σ2

b ) (20)

E(ei|xi,X−i, ti, t−i) = E(vi|xi,X−i) = E(ṽi|xi,X−i) = 0 (21)

E(eivi|xi,X−i) = E(eiṽi|xi,X−i) = E(viṽi|xi,X−i) = 0 (22)

E(e2
i |xi,X−i, ti, t−i) > 0; E(v2

i |xi,X−i) > 0 (23)

Moving through the components of the model, θ is the parameter of interest. The first

set of nuisance functions (f(xi), g1(xi)) are inherited from the partially linear model. The

pure error terms ei, vi also follow directly from the partially linear model.

The interference components are denoted φy(xi,X−i, t−i,hy), φt(xi,X−i,ht). The vector

of bandwidth parameters are denoted ht,hy, which will govern the radius for which one

observation impacts others. Note that either the treatment or the covariates from one ob-

servation can affect another’s outcome, but the only interference allowed in the treatment

model comes from the background covariates (see Section 6).

The treatment variable has two error components. The term vi is “pure noise,” in that its

variance is not a function of covariates. The term ṽi is noise associated with heteroskedastic-

ity in the treatment variable. The component g2(xi,X−i)ṽi will adjust for treatment effect

heterogeneity bias. The term ṽi is the error component in the treatment associated with the

function g2(xi,X−i) which drives any systematic heteroskedasticity in the treatment variable.

The conditions on the error terms are also standard. The terms aj[i], bj[i] are random

effects with observation i in group j[i] (Gelman and Hill, 2007), and Condition 20 assumes

the random effects are realizations from a common normal distribution. Equations 21 assume
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no omitted variables that may bias inference on θ. This conditional independence assumption

is standard in the semiparametric literature (see, e.g. Chernozhukov et al., 2018; Donald and

Newey, 1994; Robinson, 1988). Equations 22 ensure that the error terms are all uncorrelated.

Any correlation between ei and either vi or ṽi would induce simultaneity bias. The absence of

correlation between vi and ṽi fully isolates the heteroskedasticity in the treatment variable in

order to eliminate treatment effect heterogeneity bias. The final assumptions in Expression

23 require that there be a random component in the outcome variable and the treatment for

each observation. The latter is the positivity assumption in Section 6.

Equations 18-19 can be combined into the infeasible reduced form equation

yi =θti+

[f(xi), φy(xi,X−i, t−i,hy), g1(xi), g2(xi,X−i)ṽi, φt(xi,X−i,ht)]
>γPLCE

+ cj[i] + ei

(24)

where the random effect combines those from the treatment and outcome model, cj[i] =

aj[i] + bj[i]. The next section extends logic from Section 4.2 to the proposed model in order

to construct a semiparametrically efficient estimate of θ.

7.1 Formal Assumptions

The following assumption will allow a semiparametrically efficient estimate of the marginal

effect in the PLCE model.

Assumption 1 (PLCE Assumptions)

1. Population Model. The population model is given in Equations 18 - 19, and all random
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components satisfy the conditions in Equation 20-23.

2. Efficient Infeasible Estimate. Were all nuisance functions known, the least squares

estimate from the reduced form model in Equation 24 would be efficient and allow for

valid inference on θ.

3. Representation. There exists a finite dimensional control vector Uu,i that allows for

valid and efficient inference on θ.

4. Approximation Error. All nuisance components are estimated such that the approxi-

mation errors converge uniformly at the rate n1/8.

5. Estimation Strategy. The split-sample strategy of Figure 1 is employed.

The first assumption requires that the structure of the model and conditions on the error

terms are correct. The second assumption serves two purposes. First, it requires that the

standard least squares assumptions (see, e.g., Wooldridge, 2013, Assumptions MLR 1-5 in ch.

3.) hold for the infeasible, reduced form model. This requires no unobserved confounders or

unmodeled interference.16 Second, it establishes the semiparametric efficiency bound, which

is the limiting distribution of the infeasible estimate θ̂ from this model.

The third assumption structures the control vector, Uu,i. This vector contains all esti-

mates of each the nuisance functions in Equation 24, producing a first-order semiparamet-

rically efficient estimate. This assumption guarantees that by including the second-order

16Crucial to the split-sample strategy is that the observations are conditionally independent, meaning a
valid marginal effect estimate can be recovered on any randomly-generated split. This requires that this
aspect is not broken by unmodeled interference. Intuitively, all of the interference is condensed into the
functions φy, φt such that, after conditioning on these, observations are independent.
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covariates as described in Section 4.4, least squares can be still be used to estimate θ.17

The fourth and fifth assumptions are analogous to those implemented in the Double Ma-

chine Learning strategy (Chernozhukov et al., 2018). Including the constructed covariates

relaxes the accuracy required of the approximation error from n1/4 to n1/8, while the im-

portance of the repeated cross-fitting strategy in eliminating biases between approximation

errors and the error terms ei, vi is discussed in Section 4.2.

7.1.1 Scope Conditions and Discussion of Assumptions

The assumption that Ui,u is finite dimensional is the primary constraint on the model. Ef-

fectively, this assumption allows all nuisance functions to condense into a single control

vector, allowing valid inference with a linear regression in subsample S2. This assumption

compares favorably to many in the literature. Belloni, Chernozhukov and Hansen (2014)

make a “sparsity assumption,” that the conditional mean can be well-approximated by a

subset of functions of the covariates.18 I relax this assumption, since the estimated principal

components may be an average of a large number of covariates and functions of covariates.

The use of principal components is a form of “sufficient dimension reduction” (Li, 2018;

Hsing and Ren, 2009), where I assume that the covariates and nonlinear functions of the

covariates can be reduced to a set that fully captures any systematic variance in the out-

come.19 I am able to sidestep the analytic issues in characterizing the covariance function of

the observations analytically (see, e.g., Wahba, 1990) by instead taking principal components

17With added assumptions, the dimensionality of these covariates could grow on the order of
√
n, though

I save this for further work (see, e.g. Chernozhukov et al., 2018; Cattaneo, Jansson and Newey, 2018).
18The authors rely on an “approximate sparsity” assumption where the model is sparse up to an error

tending to zero in sample size.
19See Appendix D.1 for a discussion of how the software implements nonlinearities and interactions the

model.
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of the variance matrix. The sample-splitting strategy is also original.

Restricting Ui,u to be finite dimensional means that the proposed method cannot accom-

modate data where the dimensionality of the variance grows in sample size. To give two

examples, in the panel setting, the method can handle random effects for each unit but not

arbitrary nonparametric functions per unit. Second, the proposed method can account for

interference, but only if the dimensionality of the interference does not grow in the sample

size. This assumption is in line with those made by other works on interference (Savje,

Aronow and Hudgens, 2021).

In not requiring distributional assumptions on the treatment variable, the proposed

method pushes past a causal inference literature that is most developed with a binary treat-

ment. Many of the problems I address have been resolved in the binary treatment setting

(Robins, Rotnitzky and Zhao, 1994; van der Laan and Rose, 2011) or where the treatment

density is assumed (Fong, Hazlett and Imai, 2018). Nonparametric estimates of inverse den-

sity weights are inherently unstable, so I do not pursue this approach but see Kennedy et al.

(2017). Rather, the proposed method mean-adjusts for confounding by constructing a set

of control variables. I show below, through simulation and empirical examples, that the

method generates reliable estimates.

7.2 Estimation Strategy: Three-Fold Split Sample

Heuristically, two sets of nuisance components enter the model. The first are used to con-

struct nuisance functions: the treatment error ṽi that interacts with g2 and the bandwidth

parameters hy,ht that parameterize the interference terms. I denote these parameters as the

set u = {{ṽi}ni=1,hy,ht}. The second set are those that, given the first set, enter additively

26



Full Data

Learn Nuisance Functions
Learn Treatment
Error And Bandwidth

Estimate Effect

Estimate error term
and bandwidth
parameters
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Figure 1: The estimation strategy. To estimate the components in the model, the data
are split into thirds. Data in the first subsample, S0, is used to estimate the interference
bandwidths and treatment residuals. The second subsample, S1, given the estimates from
the first, is used to construct the covariates that will adjust for all the biases in the model.
The third, S2, estimates a linear regression with the constructed covariates as controls.

into the model. These consist of the functions f, g1, but also the functions g2, φy, φt. If u were

known, estimating these terms would collapse into the Double Machine Learning strategy

outlined in Section 4.3. Since u is not known, it must also be estimated in a separate step,

necessitating a third split of the data.

I defer precise implementation details to Appendices D and E, but more important than

particular implementation choices is the general strategy for estimating the nuisance compo-

nents such that the approximation errors do not bias inference on θ. I outline this strategy

here.

The proposed method begin by splitting the data into three subsamples, S0, S1, and S2,
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each containing a third of the data. Then, in subsample S0, all of the components in the

models in Equations 18 and 19 are estimated, but only those marked below are retained,

yi = θti + f(xi) + φy(xi,X−i, t−i, hy︸︷︷︸
S0

) + aj[i] + ei (25)

ti = g1(xi) + g2(xi,X−i) ṽi︸︷︷︸
S0

+φt(xi,X−i, t−i, ht︸︷︷︸
S0

) + bj[i] + vi (26)

These retained components, ĥy, ĥt and a model for estimating the error terms
{̂̃vi}n

i=1
,

are then carried to subsample S1.

Data in subsample S1 is used to evaluate the bandwidth parameters and error term using

the values from the previous subsample, and given these, to estimate the terms marked

below,

yi = θti + f︸︷︷︸
S1

(xi) + φy︸︷︷︸
S1

(xi,X−i, t−i, ĥy) + aj[i]︸︷︷︸
S1

+ei (27)

ti = g1︸︷︷︸
S1

(xi) + g2︸︷︷︸
S1

(xi,X−i) ̂̃vi + φt(xi,X−i, t−i, ĥ) + bj[i]︸︷︷︸
S1

+vi. (28)

Having estimated all nuisance terms, including the random effects, the feasible control

variable Ûû,i is now constructed. This variable consists of two sets of covariates. The first is

the point estimates of all of the nuisance components estimated from S0 and S1 but evaluated

on S2. It also includes the second-order terms, also estimated on subsample S1 but evaluated

on subsample S2. This control vector is then entered into the reduced form model

yi = θti + Û>û,iγ + ei. (29)
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which generates an estimate θ̂ and its standard error.

Estimation is done via a cross-fitting strategy, where the roles of each subsample in

generating the estimate are swapped, this cross-fitting is repeated mulptile times, and the

results aggregated. Complete details appear in Appendix E.

I now turn to illustrate the performance of the proposed method in two simulation studies.

8 Illustrative Simulations

The simulations assess performance across three dimensions: treatment effect heterogeneity

bias, random effects, and interference, generating eight different simulation settings. In each,

a standard normal covariate xi1 is drawn along with error terms vi and εi, each standard

normal, with the covariate standardized so that 1
n

∑n
i=1 xi = 0 and 1

n

∑n
i=1 x

2
i = 1. Four ad-

ditional normal noise covariates are included, with pairwise correlations among all covariates

0.5, but only the first is used to generate the treatment and the outcome.

The simulations were designed to highlight my theoretical expectations in the simplest

possible setting. In each setting, the marginal effect is in-truth 1, the systematic component

is driven entirely by the first covariate, and all covariates, random effects, and the error

terms are normally distributed. Table 2 provides details. The first model is additive, non-

interactive, and equivariant in all errors, serving as a baseline. The second model induces

treatment effect heterogeneity bias by including an interaction between the treatment and

squared covariate along with heteroskedasticity in the treatment residual. The third adds a

fifty-leveled, standard normally distributed random effect as a confounder, and the fourth

adds an interaction term. Note that summations are over all other observations, such that

the outcome is a function of other observations’ treatment level while the treatment is a
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Model Specifications

Baseline: yi = ti+x
2
i1 + εi ti = xi1 + vi; vi

i.i.d.∼ N (0, 1)

Treatment Effect Heterogeneity: yi = ti×x2
i1 + εi ti = xi1 + vi; vi

i.i.d.∼ N
(

0,
x2
i1 + 1

2

)
Random Effects: yi = ·+ aj[i] ti = ·+ aj[i]; aj

i.i.d.∼ N (0, 1); #j = 50

Interference: yi = ·+ ψt,i ti = ·+ ψx,i

Constructing Interference Terms

Interference Covariates: ψt,i =
∑
i′ 6=i

pi,i′ × ti′ ; ψx,i =
∑
i′ 6=i

pi,i′ × x2
i′1

where pi,i′ =
e−(xi1−xi′1)2∑
i′ 6=i e

−(xi1−xi′1)2

Table 2: Simulation Specifications. The first simulation begins with the baseline additive
model, and the second adds treatment effect heterogeneity bias by introducing a correlation
between effect heterogeneity and treatment assignment heteroskedasticity. In the third,
a fifty-leveled random effect is included as a confounder. The final specification adds an
interference term, with the precise construction of the term at the bottom. The residual
term εi follows a standard normal.

function of other observations’ squared covariate.

The covariates are then transformed as

x∗i =

[
xi1 −

1

2
xi2, xi2 −

1

2
xi1, xi3, xi4, xi5

]
.

and each method is given the outcome, treatment, transformed covariates and indicator

variables for the random effects, regardless of whether the random effects are in the true

data generating process. I report results for n = 1000 with additional sample sizes in

Appendix F.20

20At smaller sample sizes, the method performs similarly in terms of point estimation, and n = 250 the
confidence intervals are valid but a bit conservative, while for n = 500 and above, the results appear similar
to the results in the body.

30



Along with the proposed method (PLCE), I implement four different machine learning

methods. Kernel Regularized Least Squares ((KRLS) Hainmueller and Hazlett, 2013) fits a

single, nonparametric regression, takes the partial derivative of the fitted model with respect

to the treatment variable, and returns the average of these values as the marginal effect. The

Covariate Balancing Propensity Score for continuous treatments ((CBPS) Fong, Hazlett and

Imai, 2018)21 generates a set of weights that eliminate the effect of confounders under the

assumption that the treatment distribution is normal and equivariant. I also include the

Double Machine Learning (DML) of Chernozhukov et al. (2018) with use random forests

used to learn f̂ , ĝ and the generalized random forest (GRF) of Athey, Tibshirani and Wager

(2019), which is similar to DML but uses a particular random forest algorithm tuned for

efficient inference on a marginal effect. I also include least squares (OLS) for comparison.

KRLS is closest to the proposed method, in that both implement a nonparametric regres-

sion model. As such, KRLS should handle nonlinearities well, but since it does not engage in

a split-sample strategy, I expect undercoverage with its confidence intervals. DML and GRF

do engage in a split-sample strategy, but, like KRLS, were not designed to handle random

effects. I expect all three to perform poorly. OLS should handle the random effects well,

since they are simply entered them as covariates in the model, but should be particularly

susceptible to treatment effect heterogeneity bias. None of the methods were constructed to

adjust for interference. The proposed method, PLCE, should do a reasonable job across all

settings, as it was designed to handle random effects and adjust for both interference and

treatment effect heterogeneity bias.

21In this simulation, I use parametric CBPS, so that I can recover standard error estimates. So as not to
handicap the method, I give it both the covariates and their square terms, so the true generative model is
being balanced.
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Figure 2: Results for simulations without interference. The first column shows the
distribution of point estimates, where the true value is 1, in gray. The second column shows
the coverage rates: expected coverage is on the x-axis and actual coverage is on the y-
axis. If a curve falls below the 45◦ line, the confidence intervals are too narrow and hence
invalid. If the curve falls above the 45◦ line, the confidence intervals are valid but wide.
The proposed method (PLCE) is compared against Generalized Random Forests (GRF),
Double Machine Learning (DML), the Covariate Balancing Propensity Score for continuous
treatments (CBPS), Kernel Regularized Least Squares (KRLS), and least squares (OLS).
The proposed method, PLCE, is the only one to perform well across all settings.
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8.1 Results for the Setting Without Interference

Results for the simulations without interference are in Figure 2. The first column shows

the distribution of point estimates, with the true value of 1 in gray. The second column

shows the coverage rates: expected coverage is on the x-axis and actual coverage is on the

y-axis.22 For example, consider in the top right plot the point marked “×” at (0.90, 0.82),

which is on the CBPS curve. Here, I constructed a 90% confidence interval of the form

[θ̂ − 1.64σ̂θ̂, θ̂ + 1.64σ̂θ̂] and measured the proportion of simulations where the confidence

interval contains the true value of 1. In this case, for CBPS, this value is 0.82, so the 90%

confidence interval is invalid, albeit only slightly too narrow. More generally, if a curve falls

below the 45◦ line, the confidence intervals are too narrow and hence invalid. If the curve

falls above the 45◦ line, the confidence intervals are valid but wide.

Simulation settings increase in complexity going down the rows. The first row of figures

contains contains the baseline model; the second, the model with group indicators added; the

third, the baseline model with treatment effect heterogeneity; and the fourth, both treatment

effect heterogeneity model and random effects.

Starting in the first row every method performs well in the baseline model, though KRLS

exhibits under-coverage. In the second row, with random effects added, only the proposed

method and OLS provide unbiased estimates and valid inference. In the third row, the pro-

posed method and KRLS are unbiased with valid intervals. In the final row, with both ran-

dom effects and treatment effect heterogeneity, every method shows discernible bias, though

the proposed method and KRLS have the lowest bias and the least misleading confidence

22The “coverage rate” is the proportion of samples for which the constructed confidence interval contains
the true value of 1 (see, e.g. Wooldridge, 2013, Sec. 4.3.).
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errors.

Several machine learning methods fail to provide unbiased estimation in the presence of

random effects or a simple interaction between the treatment effect and treatment residual.

Across all settings, the proposed method is the only one that that allows for valid inference.

8.2 Results for the Setting With Interference

Figure 3 presents results from the simulations in the presence of interference. All methods

save least squares return accurate point estimates in the simplest setting, with the proposed

method, DML, and CBPS providing narrow but reasonable confidence intervals. Coverage

from GRF, while valid in the setting without interference, is now near-zero. In the remaining

rows, point estimates are reasonable, particularly for the proposed method but also KRLS.

The impact of interference shows up in the coverage rates. In the bottom three settings,

coverage rates are near-zero for all methods. Only the proposed method provides both

reliable point estimates and confidence intervals across each of the settings.

9 Empirical Applications

I illustrate the proposed method using data from two recent studies. First, I reanalyze

experimental data to illustrate that the proposed method returns estimates and standard

errors similar to a linear regression when the linear regression is the correct thing to do.

Second, I show how the method can estimate a treatment effect with a continuous treatment

variable. I use data from a study where the researcher was forced to dichotomize a continuous

treatment in order to estimate a causal effect.
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Figure 3: Results for simulations with interference. The first column shows the
distribution of point estimates, where the true value is 1, in gray. The second column
shows the coverage rates: expected coverage is on the x-axis and actual coverage is on the
y-axis. If a curve falls below the 45◦, the confidence intervals are too narrow and hence
invalid. If the curve falls above the 45◦ line, the confidence intervals are valid but wide.
The proposed method, PLCE, is compared against Generalized Random Forests (GRF),
Double Machine Learning (DML), the Covariate Balancing Propensity Score for continuous
treatments (CBPS), Kernel Regularized Least Squares (KRLS), and least squares (OLS).
The proposed method, PLCE, is the only one to perform well across all settings.
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Hawks Doves
PLCE Diff-in-Mean OLS PLCE Diff-in-Mean OLS

Estimate 11.72 11.98 11.97 36.24 35.43 35.19
s.e. 3.63 3.80 3.80 2.78 3.12 2.85

Table 3: Comparing PLCE and a Linear Regression in an Experimental Setting.
Across all statistics, the PLCE estimates perform comparably to least squares on this ex-
perimental data. The repeated cross-fitting strategy does not inflate standard errors in this
setting.

9.1 Maintaining Efficiency

Mattes and Weeks (2019) conduct a survey experiment in the United States, asking respon-

dents about a hypothetical foreign affairs crisis involving China and military presence in the

Arctic. Varied is whether the hypothetical President is a hawk or dove, whether the policy is

conciliatory or maintains status quo military levels, the party of the President, and whether

the policy is effective in reducing Chinese military presence in the Arctic. The outcome is

whether the respondent disapproves of the President’s behavior; controls consist of measures

of the respondent’s hawkishness, views on internationalism, trust in other nations, previous

vote, age, gender, education, party ID, ideology, interest in news, and importance of religion

in their life.

I focus on how the estimated causal effect of conciliation varies between hawks and doves,

as reported in Table 2 of the original work. Results appear in Table 3. For the two estimated

effects, the proposed method returns results quite similar to least squares. Importantly, the

standard errors are comparable across the methods. This suggests no efficiency loss when

employing the proposed method in a situation where least squares is known to be unbiased

and efficient.
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9.2 Estimating a Causal Effect in the Presence of a Continuous

Treatment

I next reanalyze data from a recent study that estimated the causal effect of racial threat on

voter turnout (Enos, 2016). The author operationalizes racial threat by distance to a public

housing project, a continuous measure, and measures its impact on voting behavior. The

demolishment of a subset of the projects in the early 2000s in Chicago provides a natural

experiment used for identifying the causal effect. The author implements a difference-in-

difference analysis which, unfortunately, requires a binary treatment. To accommodate the

method, the author artificially dichotomizes the continuous treatment variable, considering

all observations closer than some threshold distance to the projects as exposed to racial

threat and observations further away as not. However, the threshold is not actually known,

or even estimable, given the data. There is no reason to suspect that racial threat only

extends, say, 0.3 kilometers, and drops off precipitously after. The proposed method allows

estimation of the average causal effect of distance on the outcome.

I conduct four separate analyses. For the first, I estimate the causal effect of distance on

change in turnout for white residents within one kilometer of a demolished housing project.

The treatment variable is distance to the housing project, and the control variables consist of

turnout in the previous two elections (1998, 1996), age, squared age, gender, median income

for the Census block, value of dwelling place, and whether the deed for the residence is in the

name of the voter. I also include a random effect for identifying the nearest housing project

to each individual.23 I next generate three matched samples for further analysis.24 The first

23See the supplemental materials of Enos (2016) for more details.
24I estimate distance as a function of all covariates for white residents within one kilometer of a demolished
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−0.2 −0.1 0.0 0.1 0.2

Blacks, > 1km from Any Projects

Whites, > 1km from Any Projects

Blacks, < 1km from Demolished Projects

Whites, < 1km from Demolished Projects

Estimated Causal Effect of Distance on Turnout

Figure 4: Causal Effect Estimate of Racial Threat. Revisiting the study by Enos
(2016), I find a statistically and substantively relevant impact of racial threat on white
voters (top row) and, as predicted by theory, not for black voters near the housing projects
(second row) or for black and white voters further than 1 km from any projects.

contains black voters within one kilometer of a demolished housing project. As argued in the

original piece (p. 11), this group will not face racial threat, and so it provides a measure of

any trend in turnout absent racial threat. The next two samples consist of white and black

voters, but both further than one kilometer from any housing project, either demolished or

not. The latter two groups serve as placebo groups, since they are sufficiently far from a

demolished project that any threat should be muted.

Figure 4 presents the effect estimates. I estimate that living adjacent to a public housing

unit, rather than 1 km away, causes a decrease in turnout of about 7.93 percentage points for

project using a random forest. I then use this model to predict the treatment level, using black residents
within one kilometer and then white and black residents greater than one kilometer away. Nearest neighbor
matching is implemented to construct the three additional datasets.
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white residents (s.e. = 0.0390, z = 2.03), an effect in line with the results from the original

analysis (see Figure 1 there). The estimated effect for black voters near housing projects

of 0.0054 (s.e. = 0.035, z = 0.15) is not significant. The bottom two lines consider distal

blacks and whites, providing a placebo test. I find no effect of distance on turnout. Along

with not relying on a user-specified control set, the proposed method allows for causal effect

estimation with a continuous treatment variable. I find results of a similar magnitude to

the original study, but without needing to transform the data so that it is amenable to a

framework that generally relies on a binary treatment.

10 Conclusion

Testing intuitions and hypotheses against the data in a way that does not rely on strong

assumptions is essential to a reliable accumulation of knowledge. Doing so builds faith that

the results and theory are driven by actual trends in the data and not a particular set

of choices made by the researcher. To this end, I have introduced to political science a

framework, taken from the field of semiparametric inference, for conducting valid inference

while allowing machine learning methods to construct a control vector that can account

for a wide range of commonly encountered biases. Essential to this approach is a sample

splitting strategy, where the same data is never used to both construct the control vector

and conduct inference. I have extended this literature, allowing for inference robust to

both heterogeneities in the treatment effect and particular patterns of interference among

observations. The method extends causal inference, as well, accommodating continuous

treatment variables. The accompanying software allows these analyses to be done in a line

or two of code and allows for several diagnostics.
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Ultimately, my aim is to allow for more believable, less assumption-driven inference. I

move the field in this direction, where machine learning can be incorporated into workaday

research as a means of controlling for background covariates, freeing the researcher to develop

and test theories with some confidence that the results are not driven by her ability to specify

every element of a statistical model.
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A Formal Derivation of a Semiparametrically Efficient

Estimator in the Partially Linear Model

A.1 Notation

In order to integrate the technical discussion with the broader statistical literature, I adopt

the standard empirical process notation, where Pn denotes the sample mean, Pnxi = 1
n

∑n
i=1 xi,

P the population mean Pxi = E(xi) and Gn the empirical process Gnxi =
√
n(Pnxi − Pxi).

The remaining notation is as in the body.

A.2 Characterizing the Semiparametric Efficiency Bound

The semiparametrically efficient estimate can be calculated treating the model where I as-

sume the true nuisance functions were known, called the parametric submodel, as a linear

regression,

y = θt + Xηγy + e

t = Xηγt + u

with the ith row of Xη is xη,i = [f(xi), g(xi)]. Hη is the projection matrix of Xη(X
>
η Xη)

−1X>η ,

where the matrix is assumed full rank, and Aη = In −Hη, the annihilator matrix.
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Denote as ỹ, t̃ the residuals after regressing y, t on the matrix Xη, i.e.

t̃ = Aηt = Aηu︸︷︷︸
:=ũ

= ũ

ỹ = Aηy = θAηt + Aηe︸︷︷︸
:=ẽ

= θt̃ + ẽ

= θũ + ẽ

The semiparametrically efficient estimate is then

θ̂ =
ỹ>t̃

t̃>t̃
(30)

=
Pnỹit̃i

Pnt̃2i
(31)

=
Pn(θũ2

i + ũiẽi)

Pnũ2
i

(32)

= θ +
Pnũiẽi
Pnũ2

i

(33)

The estimator is clearly consistent for θ by the law of large numbers. Then, to calculate its

limiting distribution,

√
n
(
θ̂ − θ

)
= Gnθ̂ =

√
n

{
Pnũiẽi
Pnũ2

i

}
(34)

 N

(
0,

E (ũ2
i ẽ

2
i )

E (ũ2
i )

2

)
. (35)
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This gives the semiparametric efficiency bound for the model.

Now, were f, g known, least squares could recover a point and variance estimate through

the method of least squares, and it would be efficient. Since f, g are not known, I next

construct an estimate that is asymptotically indistinguishable from the estimate calculated

from the parametric submodel. This estimate will be semiparametrically efficient.

A.3 Deviations Between the Feasible Estimate and the Semipara-

metrically Efficient Estimator

The functions f, g are not known but instead estimated as f̂ , ĝ, introducing ∆f̂ ,∆ĝ into the

linear regression. The argument follows exactly as above, except these approximation error

terms must be accounted for.

Writing the models in terms of f̂ , ĝ, and hence in terms of f, g and ∆f̂ ,∆ĝ, gives

y = θt + Xηγy + X∆βy + e

t = Xηγt + X∆βt + u

with the ith row of X∆ is x∆,i = [∆f̂ ,i,∆ĝ,i].
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Then, constructing

t̃ = Aηt = AηX∆βy︸ ︷︷ ︸
:=∆̃t

+ Aηu︸︷︷︸
:=ũ

(36)

= ũ + ∆̃t (37)

ỹ = Aηy = θAηt + AηX∆βy︸ ︷︷ ︸
:=∆̃y

+ Aηe︸︷︷︸
:=ẽ

(38)

= θt̃ + ẽ (39)

= θũ + θ∆̃t + ∆̃y + ẽ (40)

These partialed-out values can be used to construct

√
n(θ̂ − θ) = Gnθ̂ =

√
n

(
Pnt̃iỹi

Pnt̃2i
− θ

)
(41)

Beginning with the denominator,

Pnt̃
2
i = Pn

{
ũ2
i + 2ũi∆̃ĝ,i + ∆̃2

ĝ,i

}
u→ E(u2

i ) (42)

by the uniform consistency of f̂ , ĝ. A uniform Slutsky’s theorem can then be used to char-

acterize the limiting behavior as

√
n(θ̂ − θ) = Gnθ̂ =

√
n

(
Pnt̃iỹi
E(ũ2

i )
− θ

)
(43)

52



and expanding the numerator gives,

√
n(θ̂ − θ) = Gnθ̂ =

√
n

θPnũ2
i + Pnũiẽi
Pũ2

i︸ ︷︷ ︸
efficient estimate

−θ

+
√
n
B

Pũ2
i︸ ︷︷ ︸

bias terms

(44)

where B = Pn

{
2θũi∆̃ĝ,i + ũi∆̃f̂ ,i + ∆̃ĝ,iẽi + θ∆̃2

ĝ,i + ∆̃ĝ,i∆̃f̂ ,i

}
(45)

The first element of the sum shares a limiting distribution with the estimate given above,

and hence achieves the semiparametric efficiency bound.

Establishing semiparametric efficiency of an estimate is, at its simplest, deriving a set

of assumptions under which
√
nB

u→ 0. Recall that ∆̃f̂ ,i, ∆̃ĝ,i are each an arbitrary linear

combination of the approximation error terms and ũi and ẽi are a linear combination of the

errors. Zeroing out the first three terms can be guaranteed when

√
nPnui∆f̂ ,i

u→ 0,
√
nPnui∆ĝ,i

u→ 0 (46)

and the third when

√
nPnei∆f̂ ,i

u→ 0,
√
nPnei∆ĝ,i

u→ 0. (47)

This is accomplished through a split-sample strategy, as the split sample approach guarantees

that the random element in the approximation error is conditionally independent of that in

the inference sample.25 See van der Vaart (1998, ch. 25) for more.

25An alternative approach is to assume that the functions f, g are sufficiently simple that this bias term
is negligible. This is referred to as a Donsker-class assumption; see (van der Vaart, 1998, esp. Ch. 19) for
details.
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The last two bias terms involve square and cross-products of the approximation error

terms,

√
nPn∆2

f̂ ,i
,
√
nPn∆2

ĝ,i;
√
nPn∆f̂ ,i∆ĝ,i. (48)

By taking the square roots of the square terms and applying Cauchy-Schwarz to the cross-

product, these terms go to zero when

n1/4
√
Pn∆2

ĝ,i

u→ 0; n1/4
√
Pn∆2

f̂ ,i

u→ 0, (49)

which gives the n1/4 rate described in the text. Under these conditions, B tends to zero

uniformly and the estimate is semiparamterically efficient.

A.4 Second-Order Semiparametric Efficiency

So long as the covariate vectors Ûf̂ ,i, Ûĝ,i are finite dimensional, which they are by assumption,

then the argument above establishes their first-order semiparametric efficiency.

Reducing the rate from n1/4 to n1/8 requires examine the convergence of these two co-

variates. Consider the convergence of Ûf̂ ,i, with an analogous argument for Ûĝ,i. In this case,

the principal components are constructed from cross-observation covariances,

f(xi) ≈ f̂(xi) + Û>
f̂ ,i
γf (50)

f(xi) = f̂(xi) +
n∑

i′=1

Ĉov(f̂(xi), f̂(xi′))wi′ (51)
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for scalars ŵi′ .
26 The finite-dimensional assumption of the Uf,i constrains wi′ , since these are

linear combinations of the finite terms in γf , and the split-sample approach will ensure any

approximation errors in γ̂f and f̂ be uncorrelated.

As to the gain in efficiency, note that estimating the covariates from principal components

will introduce terms like

√
nPn

{
Ĉov(f̂(xi), f̂(xi′))− Cov(f̂(xi), f̂(xi′))

}2

(52)

into the regression. For first-order semiparametric efficiency, the n1/4 rate is recovered from

taking the square root of this term. For the second order calculation, though, note that

since f̂(xi), f̂(xi′) are both converging at n1/8, their product in the covariance is converging

at n1/4.

Essential to this argument is the finite-dimensional assumption on the covariance matrix.

This particular assumption, sometimes termed “sufficient dimension reduction,” (see Section

7.1.1 of the main body), makes convergence of the sums described above tractable. Under

this assumption, argument can follow dimension-by-dimension by a Cramer-Wold device

van der Vaart (1998). This finite-dimensional assumption, as a theoretical matter, is crude

but as a practical matter aligns with the method’s approach, where a control vector is simply

entered into a reduced form regression. For a more general theoretical discussion, see Li et al.

(2011) and Robins et al. (2008).

If the finite dimensional assumption is correct then the method achieves second-order

efficiency by fully capturing the variance in the approximation errors. If this assumption is

26This is an example of a second-order U-statistic, see van der Vaart (1998) Ch. 12 for more.
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not correct, though, the method still recovers a semiparametrically efficient estimate and–

due to the split sample strategy–the principal components should help or, at worst, increase

the variance of the estimates. The simulations and applied examples provide compelling

evidence that the approach is reasonable.

B Causal Assumptions

In giving these assumptions, I utilize the potential outcomes notation (Imbens and Rubin,

2015), where each observation is equipped with a potential outcome function yi(t) which

deterministically maps an arbitrary treatment level t to the outcome for observation i under

that treatment, yi(t). I will denote as X−i, t−i the background covariates and treatments for

all observations except observation i.

Assumption 2 Causal Assumptions

1. Stable treatment value: There is a single version of each treatment value.

2. Positivity: The treatment is not deterministic, Var(ti|xi,X−i) > 0 for all observations

i.

3. Ignorability:27

(a) ti⊥⊥t−i|xi,X−i

(b) yi(ti, t−i)⊥⊥ti|t−i,xi,X−i

The discussion of these assumptions appears in the text. I next show that the these

assumptions identify the marginal causal effect.

27Here, the notation A⊥⊥B|C means that event A is conditionally independent of B given C.
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The partial effect of the treatment on the outcome at a given point xi can be conceptu-

alized as the limit of an estimated slope coefficient from regressing the yi on ti for all with

the same covariate value xi and also fixing X−i. The causal interpretation of this param-

eter involves considering all possible combinations (yi(ti, t−i), ti, t−i) for all values of t and

regressing yi(ti, t−i) on ti.

Equating the causal and descriptive parameters requires three things. First, yi(ti, t−i)

must equal yi when the treatment takes the value t. This is the first assumption. Second, the

variance of the treatment variable must be positive, so that the denominator of the coefficient

is nonzero. Third, only considering observation i with covariate values xi,X−i, t−i allows ti

to move freely of the other treatment and of any unobserved confounders. This is the third

assumption.

Formally, denote as Cov,Var the sample covariances, and CovT ,VarT these operators for

a given observation taken with respect to the treatment. Then, under the causal identificaton

assumptions, the marginal effect and causal effect can be equated as

θi =
Cov(yi, ti|xi,X−i, t−i)

Var(ti|xi,X−i, t−i)︸ ︷︷ ︸
Partial Effect

=
CovT (yi(ti, t−i), ti|t−i)

VarT (ti|t−i)︸ ︷︷ ︸
Causal Effect

. (53)

The estimand is well-defined by the stable treatment assumption; its denominator is nonzero

by the postivity assumption; and the ignorability assumption equates the numerators and

denominators.

Equating the marginal effect and observation-level effect for each observation equates

their averages.
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C Diagnostics

I implement a sensitivity analysis in order to assess how strong an unobserved confounder

must be in order to overturn any results. Since the method is, in effect, a linear regression

in subsample S2, diagnostics for the linear regression are applicable.

I implement the recent method of Cinelli and Hazlett (2020) in the software. Following

the authors’ suggestion, the software report three statistics. The statistics are calculated on

subsample S2, and averaged over cross-fits. The first two, robustness values RV and RV0.05,

range from 0 to 1 and characterize how strong an unobserved confounder must be in order

to reduce the observed effect to 0 (RV ) or to make it no longer significant at the 95% level

(RV0.05). Larger numbers indicate a more robust result. The second, the extreme value

statistic R2
Y∼D|X , assumes a “worst-case” confounder that perfectly explains the residuals,

and characterizes how much of the variance in the treatment this confounder must explain in

order to eliminate the estimated effect, again ranging from 0 to 1 with larger values preferred.

I also assess the positivity assumption. Positivity is violated when the treatment variable

is a deterministic function of the covariates. I do so by graphically assessing the kurtosis of

the residuals (Wooldridge, 2013, Appendix B, p. 737.).28

Denoting as ε̂i,s the residual from estimating the treatment for observation i on repeated

cross-fit iteration s, the method estimates the kurtosis κ̂i as

κ̂i =
1
S

∑S
s=1 ε̂

4
i,s

( 1
S

∑S
s=1 ε̂

2
i,s)

2
. (54)

28For a random variable X, its kurtosis is E(X4)/E(X2)2 Since the kurtosis is constructed from a fourth
moment, and can be written as E(Z2);Z = X2, the kurtosis captures the variance of the variance.
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Figure 5: Excess kurtosis plot for diagnosing positivity. The lefthand side presents the
five different error densities assessed on the right. The first one is thin-tailed and raises the
deepest concerns about violating positivity. The next is normal, then a fat-tailed and skewed
density. The last density combines a the thin-tailed density, where some observations may
violate positivity, and a normal density. Consulting the righthand figure, a positive excess
kurtosis statistic everywhere above zero suggests that the researcher should examine the data
for violations of positivity.

The excess kurtosis is the extent that this statistic falls above that expected from a normal

distribution, and the software plots them from high to low. The lefthand side of Figure

C contains five possible error densities. The first one is thin-tailed and raises the deepest

concerns about violating positivity, since the residuals are tightly clustered near zero. The

next is normal, then a fat-tailed and skewed density follow. The last combines a thin-tailed

density, where some observations may violate positivity, and a normal density.

The righthand side presents the diagnostic plot. The normal density falls on the 0 line.

The thin-tailed distribution falls everywhere above 0 and flares up to the right. The fat-tailed

distribution falls below 0, flaring down. The skewed distribution agrees with the normal close

to zero, but then flares up above 0 as the thin-tailed distribution. The mixture of the normal
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and thin-tailed creates a U -shape, going down below 0 then up again.

A positive excess kurtosis statistic everywhere above zero suggests that the researcher

should examine the data for violations of positivity. This method is diagnostic and, it must

be emphasized, needs to be combined with substantive knowledge. If a violation is found,

the researcher should identify observations for which the residuals are pooling near zero and

consider trimming them from the analysis. This will change the estimand from the average

effect to a local average effect on the trimmed sample.

These statistical diagnostics and the excess kurtosis plot are all returned by my software.

D Implementation Details: Preliminaries

In this section, I give an overview of the estimation strategy. The software itself is public and

can be expected. The results presented here were generated using the software submitted

in the replication file and will be available via the APSR branch of the software’s github at

https://github.com/ratkovic/PLCE/tree/APSR. The publicly available version via CRAN

may be updated over time and results may not match exactly those reported in this work.

D.1 Preliminaries: Basis Functions

D.1.1 B-Spline Basis Functions

The software adjusts for nonlinearities in the control variables by transforming them into a

set of basis functions knowns as “B-splines” (de Boor, 1978). The original control variables

are rank-transformed and rescaled to run from 0 to 1. Then for each covariate, include along

with the original variable is a set of degree 3 B-splines with different knots along its range,

see Figure D.1.1.
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Figure 6: Nonlinear transformations of each variable used to construct basis
functions.

I denote the kth of these transformations applied to covariate X·j as

X·j 7→ φk(X·j)

The first two basis functions are the intercept and the linear term,

φ0(X·j) = 1n; φ1(X·j) = X·j

Including the intercept and linear term with the five nonlinear transformation, seven terms

are generated from each covariate.
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D.1.2 Constructing Basis Functions for the Nuisance Functions

Modeling Conditional Mean Components I model the nuisance functions f, g1 in

terms of all two-way interactions between the basis functions,

φk,k′(X·j,X·j′) = φk(X·j)φk′(X·j′)

Modeling Treatment Heteroskedasticity For the treatment heteroskedsticity term, I

use the three-way interaction

φk,k′(X·j,X·j′ , v̂) = v̂φk(X·j)φk′(X·j′)

where v̂ = t − Ê(t|X), an estimated residual. I return to how I estimate the residuals

below, but for now note that the basis functions for g2 are interactions between an estimated

treatment residual and the two-way basis interactions.

Modeling Interference Components Each interference basis function is a function of

two basis functions and a bandwidth parameter. I consider how close observation i′ is to

observation i, as a function of how close ψk(xij) is to ψk(xi′j), with bandwidth νjk as

Proximity: pi,i′(νjk) =
e
− 1
νjk

(φk(xij)−φk(xi′j))
2

∑
i′ 6=i e

− 1
νjk

(φk(xij)−φk(xi′j))
2

This measure accounts for homophily and heterophily due to nonlinearities in the bases.

The interferent may be driven by an entirely different basis function and variable,φk′ and
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X·j′ ,

Interferent: ψk′(xi′j′)

I combine these two into the interference function, the total effect on observation i with

proximity pi,i′(νjk) and interferent φk′(xi′j′)

ψj,k,j′,k′(xi,X−i) =
∑
i′ 6=i

pi,i′(νjk)︸ ︷︷ ︸
Proximity

×φk′(xi′j′)︸ ︷︷ ︸
Interferent

The summation is taken over all observations except i, thereby capturing the effect of all

observations but i on observation i, creating the interference bases used in the model.

I reduce the bases above down to a reasonable number for a linear regression in two ways:

through a correlation screen and then fitting a high-dimensional regression to these selected

bases. I give specifics below, but provide an overview of the strategies here.

D.2 Screening Mean Basis Functions

I denote the first screening function as

screenmean(y, basis vectors, split) (55)

which takes as its argument an outcome, and the basis vectors.

For example constructing bases for f uses the bases

basesf = screenmean(y, {φk,k′(X·j,X·j′)},S0) (56)
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The screening process constructs all interactions, finding the between 50 and 400 bases

(growing in sample size) with the largest correlation, then uses a call to glmnet (the LASSO)

to maintain a subset of these.

D.3 Screening Interference Basis Functions

I then implement a screen for the interference basis functions.

constructinterference(y, basis vectors, split) (57)

Here, it constructs all possible interferent-proximity bases using data in the split. At a first

pass, it uses a rule-of-thumb bandwidth to reduce down the total number of combinations

down to 200. After this, it optimizes the bandwidth for every remaining pair (as this is

computationally costly), and then follows the glmnet/LASSO trimming provided above.

For example, in the outcome model, the software generates these terms using

basesφy = constructinterference(y − Ê(y|basesf ), {φk,k′(X·j,X·j′)},S0) (58)

where the conditional expectation is evaluated using only data in S0.
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D.4 The High-Dimensional Regression

High-dimensional regression in this section will refer to the sparse regression of Ratkovic and

Tingley (2017). I use the hierarchy

yi|xi, β, zi, bσ2 ∼ N (x>i β + z>i b, σ
2) (59)

βk|λ,wk, σ ∼ DE (λwk/σ) (60)

λ2|N,K ∼ Γ (α, 1) (61)

wk|γ ∼ generalizedGamma (1, 1, γ) (62)

γ ∼ exp(1) (63)

b|σ2
g , ∼ N (0|b|, σ

2
gI|b|) (64)

σ2
g ∼ InverseGamma(0, 1) (65)

where in this case xi includes the covariates augmented by the basis functions while zi is a

vector for the random effect, σ2
g is its variance, and |b| is the number of random effects.

The model is fit via EM, with the tuning parameter α picked to maximize a BIC statistic.

Importantly, this gives an estimate of V̂ar(β̂|·), which is then used to calculate V̂ar(ŷ), and

it is these principal components that are entered as controls.

D.5 The Hodges-Lehmann Estimator

I combine estimates over repeated cross-fits using the Hodges-Lehmann estimator. Cher-

nozhukov et al. (2018) suggest the median, which is not efficient, while the mean is not

robust to outliers. The Hodges-Lehmann estimator, which I denote HL(), is the median of
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pairwise averages. It has nice robustness, with a breakdown point of 0.27 (with 0 for the

mean and .5 for the median), at little loss of efficiency (5% less efficient than the mean if

the data are i.i.d. gaussian, as opposed to 57% for the median). I will denote as HL() the

Hodges-Lehmann estimate of a vector.

E Implementation Details: Split Sample

E.1 Split S0

In this split, I generate a set of candidate bases for each nuisance component, estimates v̂,

and estimate bandwidth parameters for the interference components.

Specifically, I generate the following sets of nuisance function bases:

basesf = screenmean(y, {φk,k′(X·j,X·j′)},S0) (66)

basesφy = constructinterference(y − Ê(y|basesf ), {φk,k′(X·j,X·j′)},S0) (67)

basesg1 = screenmean(t, {φk,k′(X·j,X·j′)},S0) (68)

v̂ = t− Ê(t|basesg1) (69)

basesg2 = screenmean(|v̂|, {φk,k′(X·j,X·j′)},S0) (70)

basesφt = constructinterference(t− Ê(t|basesg1 , v̂ � basesg2), {φk,k′(X·j,X·j′)},S0) (71)

v̂2 = v̂ − Ê(v̂|basesφt) (72)

Going through these, the first two basesf and basesφy follow come from above, and basesg1

is similar to basesf . Next, I model the treatment heteroskedasticity and interference in the

treatment. To do so, I want to look for any systematic trends in |v|, the absolute value of the
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error residual, which gives the bases in g2. Here, Ê denotes the high-dimensional regression

given above. Then I construct the interference bases using the residuals to regress the

treatment variable on mean bases basesg1 and interactions between the treatment residuals

v̂ and the bases basesg2 (where � denotes the elementwise interaction), using data in S0.

I then update v̂ by using instead the residuals after regressing using the high-dimensional

regression on basesφt , giving v2.

At this point, I have what is needed to move to the next split: estimated treatment

residuals v̂2 and interference bases basesφy , basesφt where the bandwidth parameters have

been estimated on subsample S0.

E.2 Split S1

The algorithm now effectively condenses into that of Chernozhukov et al. (2018). Here, all

estimation is done only using data in S1.

I regress y on {basesf , basesφy}, retaining the point estimate, selected bases, and principal

components of V̂ar(ŷ|·). I select the number of principal comoponents so as to include 90%

of the variance in V̂ar(ŷ|·). Specifically, if I denote as β̂ the estimated coefficients from this

model and B the full bases set, I take the matrix

V̂ar(ŷ) = BV̂ar(β̂|B)B> (73)

and a sufficient number of principal components to explain 90% of the variance (i.e. 90% of

the explained variance, as you would find in a scree plot).

I then follow the same strategy for regressing t̂ on {basesg1 , v̂2 � basesg2 , basesφ2}.
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I combine the point estimates, selected bases, and principal components into the matrix

Ûû. This matrix may not be full rank, with all of the elements coming in, so I use this

subsample to regress y and t on Ûû and remove any unidentified columns due to collinearity.

This matrix has been constructed in its entirety without touching any observations in S2,

meaning that sample can be used for inference.

E.3 Split S2

I now regress y on t and Ûû using data on S2. The point estimate and standard error are

saved. At default, the standard errors are HC3 standard errors, where the residuals in the

standard error calculations are replaced by their leave-one-out estimates (Long and Ervin,

2000).29

E.4 Cross-fitting and Repeated Cross-fitting

I then cross-fit once, swapping the roles of S1 and S2, as most of the computational time

occurs in subsample S0. I average the point estimates and their variances for a given cross-fit,

and then take the Hodges-Lehmann mean of each over the repeated cross-fits.

F Additional Simulations

This appendix presents simulations for sample sizes n ∈ {250, 500, 750, 2000} to supplement

those in the text at n = 1000. The figures show that the proposed method performs well

across sample sizes. The settings with interference carry the same qualitative results as

that in the body, where the proposed method performs well across settings and sample size.

29I do so due to the uncertainty over the covariate set. Note that I implemented HC0, or the stan-
dard robust standard errors, in the Mattes and Weeks (2019) replication, to match the original authors’
specification.

68



The same holds for the setting without interference. The proposed method still maintains

some bias with the effect heterogeneity at the largest sample size, but outperforms the other

methods in terms of bias, and offers estimates that are most robust to the inclusion or

exclusion of random effects.
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Figure 7: Simulation Results Without Interference, n = 250
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Figure 8: Simulation Results Without Interference, n = 500
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Figure 9: Simulation Results Without Interference, n = 750
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Figure 10: Simulation Results Without Interference, n = 2000

73



1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

ua
l C

ov
er

ag
e

PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

ua
l C

ov
er

ag
e

PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

ua
l C

ov
er

ag
e

PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

ua
l C

ov
er

ag
e

PLCE
GRF
DML
CBPS
KRLS
OLS

B
ot

h
Tr

ea
tm

en
t E

ffe
ct

 H
et

er
og

en
ei

ty
R

an
do

m
 E

ffe
ct

s 
B

as
el

in
e

Sample Size = 250, Interference

Figure 11: Simulation Results With Interference, n = 250
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Figure 12: Simulation Results With Interference, n = 500
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Figure 13: Simulation Results With Interference, n = 750
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Figure 14: Simulation Results With Interference, n = 2000
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