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Abstract

We introduce a method for scaling two data sets from different sources. The proposed method

estimates a latent factor common to both datasets as well as an idiosyncratic factor unique to each.

In addition, it offers a flexible modeling strategy that permits the scaled locations to be a function

of covariates, and efficient implementation allows for inference through resampling. A simulation

study shows that our proposed method improves over existing alternatives in capturing the variation

common to both datasets, as well as the latent factors specific to each. We apply our proposed method

to vote and speech data from the 112th U.S. Senate. We recover a shared subspace that aligns with

a standard ideological dimension running from liberals to conservatives, while recovering the words

most associated with each senator’s location. In addition, we estimate a word-specific subspace that

ranges from national security to budget concerns, and a vote-specific subspace with Tea Party senators

on one extreme and senior committee leaders on the other.
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1 Introduction

Increasingly, political scientists confront not just large amounts of data but different types of data. For

example, political actors will often generate text data and vote data (e.g. Lauderdale and Clark, 2014);

countries may have sets of qualitatively distinct attributes, such as political, social, and economic indica-

tors (e.g. Coppedge et al., 2015); the same survey questions may be given to different groups of actors

(e.g. Shor and McCarty, 2011); campaign contributions may flow from the same actors to both state and

federal candidates (Bonica, 2014). In each case, the researcher must analyze data on different attributes

for the same actors (say, tweets and votes from legislators, Barbera 2016), or the same attributes but on

different actors (say, surveys given to both legislators and the mass public, Bafumi and Herron 2010).

As a first pass, the data from different sources may simply be pooled and scaled (Quinn, 2004; Hoff,

2007; Jackman and Trier, 2008; Murray et al., 2013). Pooling suffers, though, when one data set has much

more information, swamping the information from the other set. Combining data from different sources

creates even more subtle theoretical and empirical issues. Jessee (2016) illustrated the underlying problem

rather elegantly. Using survey data for citizens and legislators, he showed that scaled locations can vary as

the relative numbers of individuals from two samples are pooled and used to estimate ideological positions.

The problem arises because the different groups give different weights to each question, and it generalizes

to the problem of how to weight data coming from two different sources.

Existing approaches have addressed, but not quite solved, the issue of how to weight different types of

data. For example, Kim et al. (2018) develop a choice-theoretic model for combining words and votes, but

a tuning parameter that balances the proportion of information coming from each source is not estimated

within the model. The strength of this earlier work is grounding the estimates in a choice-theoretic model

and estimating ideal points. As explained below, the method presented in this paper resolves the issue of
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how to optimally weight two data sources.1 In doing so, it eschews a formal choice-theoretic model, which

allows it to extend to any two data sources, at the cost of returning scaled locations rather than estimated

ideal points.

Authors like Hobbs (2017) combine information from multiple text sources using a version of canon-

ical correlation analysis (e.g. Hastie et al., 2013, Sec. 3.7), a method closely related to ours. The method

advanced by Hobbs (2017), though, is tailored to short bursts of speech and does not offer means of in-

ference. Similarly, Weighted Multidimensional Scaling (WMDS) (Borg et al. (2013); Borg and Groenen

(2005)) combines multiple dissimilarity matrices to recover a single underlying dimension (see also Ja-

coby, 1986, 2009). WMDS, though, returns only locations for the observations and not for the outcomes,

i.e. votes or words, on which the observations are measured. This issue also plagues methods that must

pre-select, rather than estimate, ideologically charged words (Groseclose and Milyo, 2005; Gentzkow and

Shapiro, 2010; Martin and Yurukoglu, 2017).

We develop a general framework for combining data from multiple sources. The method, Multi-

Dataset Multidimensional Scaling (MD2S) simultaneously scales two datasets, decomposing the data into

three separate factors: one spanning a latent space common to both datasets, and two idiosyncratic sub-

spaces – one per dataset. For example, combining votes and words on the same actors, MD2S estimates

three latent scales. The first is a joint scale informed by both words and votes. The second is informed by

words, but contains no information from votes. Likewise, the third is informed by votes, but not words.

We build off work in statistics and education focusing on recovering the correlation and shared factors

across multiple surveys or exams (Tucker, 1958; Browne, 1979; Anderson, 1989; Klami et al., 2013;

Bach and Jordan, 2005; Gupta et al., 2011; Tipping and Bishop, 1999). This model, “Inter-Battery Factor

Analysis,” is precisely the model described above. We offer a likelihood-based method for optimally

1By “optimal,” we mean that we estimate the factors that maximize the joint likelihood of the two datasets.
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weighting the information coming from the two sources, allow the user to include covariates in estimating

the scaled locations, and derive and implement an efficient algorithm for estimation.

The advances of our proposed method are fourfold. First, we recover scaled locations for both obser-

vations (say, legislators) and features (say, text and votes). Estimating, for example, which words anchor

a dimension’s extremes greatly facilitates interpretation. Second, we allow for inference on the number of

latent dimensions. Distinguishing a dimension that is signal from one that is noise is a perennial problem,

often unaddressed, in the scaling literature. To this end, we implement a permutation test to distinguish

a given dimension from noise. Our third advance is in terms of estimation. Building on insights first ad-

vanced in Aldrich and McKelvey (1977), we implement an efficient estimation routine that performs well

when the number of attributes grows large, as with text data where the researcher has a document-term

matrix with counts on thousands of n-grams for each speaker. Inference on the scaled locations for both

shared and idiosyncratic subspaces is performed via bootstrapping. Finally, scaled locations are modeled

as a function of covariates. This facilitates conducting inference on whether or how scaled locations relate

to covariates of interest, giving a principled way to explore the estimated latent scales with substantive

information.

We illustrate the method’s use and efficacy through a simulation exercise and an empirical applica-

tion. We show in the simulation study that MD2S recovers a shared and idiosyncratic dimensions more

accurately than existing methods that combine multiple datasets, especially as the number of attributes

grows large. We then apply it to roll call votes and floor speech in the US Senate, where there has been a

long interest by congressional scholars on recovering legislators’ latent scales. Our shared first dimension

aligns with the standard ideological dimension running from liberals to conservatives recovered using only

roll-call votes (e.g. Poole, 2005). By combining senators’ votes and floor speech, we recover the selected

words that differentiate Senators on this dimension, mostly on economic terms. Additionally, we further
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differentiate senators by recovering a word-specific subspace that ranges from national security to bud-

get concerns, and a vote-specific subspace with Tea Party senators on one extreme and senior committee

leaders on the other.

2 Motivation and Use Cases

To illustrate the basic problem and insight, consider the case where we observe two different streams of

data, votes in a roll call matrix and word counts in a document-term matrix, that are observed on the same

actors. As is common in text data, assume that we have many more words than votes. Were we to simply

join the two datasets and estimate a single scale, it would be closer to the words-only scaling than the

votes-only scaling. The words contain more information, but we are not interested in all of the word data.

We are most interested in the word data that contribute to explaining the joint variation in both types of

data. We could conduct multiple analyses after reweighting the matrix, to find a suitable balance between

words and votes in the scaling procedure as in Kim et al. (2018), but this sidesteps the problem of relative

weighting rather than solving it.

MD2S solves this problem by returning three factors from the two datasets. The first is a joint factor,

estimated to explain the largest amount of variance common to both datasets. The next two are idiosyn-

cratic factors, unique to each data source and uncorrelated with the common factor:

Votes Words

Shared IdiosyncraticIdiosyncratic

This model is the Inter-Battery Factor Analysis (IBFA) model of Tucker (1958). Applied to the words
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and votes example, the shared factors are scaled locations for legislators jointly informed by both words

and votes. The idiosyncratic word factors are informed by words but not votes. Colloquially, these factors

give locations on issues legislators talk about but do not vote on. Similarly, the idiosyncratic vote factors

give locations on issues legislators vote on but do not speak about. Partitioning the observed datasets into

these three groups adds nuance to scaling, allowing estimated locations to vary across different sets of

observed behaviors. Importantly, if there is in-truth no joint information between the two datasets, the

model collapses onto just scaling the two datasets separately.

As noted above, MD2S builds on this model in several regards: estimating the number of latent di-

mensions, providing an efficient and effective estimation algorithm for a large number of attributes, and

modeling the scaled locations with covariates.

Use Cases and Scope. If the data come from a single source, or the researcher is willing to ignore

the problem of one data source overwhelming the other, then a standard principal components or factor

analysis should be utilized. There may be several cases, though, where the researcher may wish to model

the two different data sources. Our interest in this method was motivated by combining text and votes,

where the sheer volume of the textual data may overwhelm the vote data. Beyond this particular case, the

method’s use fall into two broad categories: combining data sets and contrasting them.

Combining data sets may involve bringing auxiliary information to bear on a problem. For example,

roll call votes are not informative in legislatures with strong party systems or in the presence of pressures

for unanimous or lopsided voting, so words can be used to differentiate among members (for more, see

Kim et al., 2018; Kellerman, 2012). Relatedly, one data source may not have sufficient signal to generate

a reliable scale, so a second data source can help leverage the first (e.g., Hobbs, 2017). Combining the

two sources offers an additional benefit. Placing words and actors in the same space, as in our applied

example, allows the researcher to use the selected features to characterize the substantive meaning of each
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dimension.

Bridging across different actors is another form of combining data. Jessee (2016) highlighted the

problem of weighting data from different sources when bridging across different sets of respondents (e.g.,

Lewis and Tausanovitch, 2015; Tausanovitch and Warshaw, 2013; Shor and McCarty, 2011; Bafumi and

Herron, 2010). If the two groups have different item discrimination parameters, simply pooling the two

sets generates ambiguity in their ideal point estimates. The estimates will vary based on either the amount

of information or based on the number of respondents, in the two sets.2

A third instance for combining data sets comes when constructing indices. Consider the impressive set

of measures for cross-national political, civic, and institutional comparison assembled by Coppedge et al.

(2015). Generating an index by aggregating from finer to coarser measures requires a method that is not

sensitive to the number of items at each level.

A second use of the method is for contrasting the two information sources. This approach differs from

methods that only uncover a single scale; we discuss these methods in more detail below. MD2S offers

the ability to isolate a set of factors based off whether they are informing both data sets, or exclusively one

or the other. With data on word usage on the same individuals before and after an event of interest, three

sets of factors can be recovered: a factor common to variation in word usage both before and after, one

unique to word usage before the event, and one unique to information after the event. Examples of this

analysis involve contrasting Twitter data (Barbera, 2016), transcripts of Federal Open Market Committee

Meetings before and after a transparency shock (Hansen et al., 2018), or Weibo microblogs before or after

censorship (Hobbs and Roberts, 2018). Our method offers a structured way of separating out a common

factor, allowing the researcher to estimate how latent factors vary across the two datasets.

2Section B.1 in the Supplemental Appendix presents and discusses a simulation-based example of how our method can be
used for bridging.

6



3 The Proposed Method

For a each observation i P t1, 2, . . . , Nu, and covariate j P t1, 2, . . . , Kpmqu in dataset m P t1, 2u, we

denote the realized outcome as y˚
pmqi,j . Therefore, the outcome data matrices take the following form:

Y˚
pmq “

»

—

—

—

—

—

—

—

—

—

—

–

y˚
pmq1,1 y˚

pmq1,2 ¨ ¨ ¨ y˚
pmq1,Kpmq

y˚
pmq2,1 y˚

pmq2,2 ¨ ¨ ¨ y˚
pmq2,Kpmq

...
... . . . ...

y˚
pmqN,1 y˚

pmqN,2 ¨ ¨ ¨ y˚
pmqN,Kpmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1)

making Y˚
pmq of size N ˆKpmq. Note that Kp1q and Kp2q (the number of features of each dataset) may

not be equal. For example, the ith row of the dataset 1, denoted by the vector Y ˚
p1qi,‚, may be a vector of

Kp1q word counts uttered by legislator i, while the corresponding row in dataset 2, denoted by Y ˚
p2qi,‚ may

be a set of Kp2q observed roll call votes for the same legislator.

We assume that each matrix Y˚
pmq is on a common scale. This may be due to a natural scale, such as

binary vote data, columns may be normed to have sample standard deviation one, or some other method

may be used to place all columns of Y˚
pmq on a common scale (e.g., Quinn, 2004; Hoff, 2007; Murray

et al., 2013). The important point for our method is that all columns of Y˚
pmq be on a common interval

scale. While each matrix must be on a common scale, the two separate matrices may be on different scales.

For example, Y˚
p1q may word counts and Y˚

p2q roll calls.

3.1 The Model

In practice, as the intercept is rarely of interest, we pre-process the matrices by double-centering them,

so that the row-mean, column-mean, and grand mean is zero. We denote the double-centered matrices as
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Ypmq.3 Thus, we model Yp1q and Yp2q in terms of their latent factors as4

Yp1q “ ZSLp1qW
J
p1q ` Zp1qDp1qB

J
p1q `Ωp1q (2)

Yp2q “ ZSLp2qW
J
p2q ` Zp2qDp2qB

J
p2q `Ωp2q. (3)

We will refer to the N ˆ QS matrix ZS as the shared subspace and the N ˆ Qpmq matrix Zpmq as the

idiosyncratic subspace. ZS contains latent locations on the shared subspace in columns for each of the

QS dimensions. Similarly, each column of Zpmq contains the latent locations in the idiosyncratic subspace

for Qpmq latent dimensions. Lpmq is QS ˆ QS nonnegative, diagonal matrix of loadings for the shared

subspace. We assume that the two matrices Lp1q and Lp2q are proportional, so any difference between them

is attributable to the relative scales across data sources Ypmq. Wpmq is aKpmqˆQS matrix of factors for the

shared subspace for dataset Ypmq. Dpmq is a QpmqˆQpmq diagonal matrix of loadings for the idiosyncratic

subspace, and Bpmq is the Kpmq ˆ Qpmq of factors for the idiosyncratic subspace. The N ˆ Kpmq matrix

Ωpmq is of mean-zero, independent, and equivariant noise.

We have modeled each observed data matrix Ypmq in terms of a shared subspace ZS and individual

subspaces Zpmq. The researcher may believe, though, that the estimated scaled locations may vary sys-

tematically with some set of known covariates available for the N observations in the data. As in Roberts

3The maximum likelihood estimates for the intercept terms are the sample analogs (Tipping and Bishop 1999), i.e. the
double-centering matrix with each element the row-mean plus the column-mean, less the grand mean. See Poole and Rosenthal
1997 for a discussion of double-centering. Regarding imputating missing values, any method could be used; we simply impute
missing values by iteratively double-centering the matrix but requiring that all missing data have value zero.

4We chose notation consistent with Murphy (2012) and Klami et al. (2013). We denote all observed outcomes as Ypmq

instead of Y and X.
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et al. (2014), we allow the scaled locations to take the following form:

ZS “ XSβS `ΩZS
(4)

Zpmq “ Xpmqβpmq `ΩZpmq
, for m P t1, 2u (5)

where XS and Xpmq are matrices of size N ˆFS and N ˆFpmq, respectively. These matrices of covariates

structure the systematic factors of ZS and Zpmq. The matrices need not be the same for each subspace,

so one set of covariates could structure the shared subspace and another the idiosyncratic ones.5 The

N ˆ Qpmq matrix ΩZpmq
and the N ˆ QS matrix ΩZS

are of mean-zero, independent, and equivariant

noise.

In the estimation algorithm, we recover the matrices of parameters βS (of size FS ˆ QS) and βpmq

(of size Fpmq ˆ Qpmq) iteratively given equations (4) and (5). Thus, adding the covariate information can

potentially lead to different scaled locations.

We make five assumptions for identifying the model (for a discussion of identification, see Tipping

and Bishop, 1999, Appendix A.1), where the assumptions hold for m P t1, 2u:

ZJSZS “ WJ
pmqWpmq “ IQS

(6)

ZJpmqZpmq “ BJ
pmqBpmq “ IQpmq

(7)

ZJpmqZS “ 0QpmqˆQS
(8)

Lp1q9Lp2q (9)

Lpmq,Dpmq are diagonal with non-negative entries (10)

5Recovering estimates of βS ,βpmq requires that there be no linear dependence in the covariates and there be more obser-
vations than covariates, but the same covariates can be fit to each dimension and subspace.
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Assumptions (6) - (7) state that, within a given subspace, the latent scalings and factors are uncorre-

lated and length one. Assumption (8) states that the common subspace spanned by ZS is not correlated

with the idiosyncratic scalings. This assumption allows us to differentiate the shared subspace from each

idiosyncratic subspace. Assumption (9) requires the variation in loadings for the shared subspace to be

explained by the relative scales across data sources. Assumption (10) identifies the particular rotation

that we estimate. Specifically, we are assuming that the factors Wpmq and Bpmq are numerically equal to

singular decompositions of the shared and idiosyncratic subspaces of Ypmq, respectively.6 Note that we

only identify the latent factors ZS,Zpmq,WS and Bpmq up to sign.7 We follow convention and assume the

elements of Lpmq and Dpmq are nonnegative and arranged in decreasing order. We discuss relaxations of

these assumptions in Section 3.5.

3.2 A Probabilistic Framework

We next embed our factor model in a probabilistic framework, where we recover maximum likelihood

estimates of the factors. For the jth feature of dataset m, denoted by vector Ypmq,‚,j of length N , the

probabilistic MD2S model can be written as:

Ypmq,‚,j|Wpmq,j,‚, Bpmq,j,‚,Lpmq,Dpmq „ N pZSLpmqW
J
pmq,j,‚ ` ZpmqDpmqB

J
pmq,j,‚;σ

2
pmqINq (11)

where Wpmq,j,‚ and Bpmq,j,‚ represent the row of the matrix of factors associated with the jth feature of

the data.

This model is an extension of the Probabilistic Principal Components model of Tipping and Bishop

(1999); see also Bach and Jordan (2005). We differ from these models as we are most interested in the
6See (Tipping and Bishop, 1999) and our discussion below for more.
7This means that the data cannot differentiate between a model with estimates tZS ,Zpmq,WS ,Bpmqu and

t´ZS ,´Zpmq,´WS ,´Bpmqu.
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actors’ spatial locations (ZS,Zpmqq, so we treat the weights Wpmq and Bpmq as random and the spatial

locations as fixed (see also Aldrich and McKelvey, 1977, p. 117). We maintain the assumption that the

errors are of equal variance, and therefore do not vary systematically across individuals or features.

Marginalizing over Wpmq,j,‚ and Bpmq,j,‚, gives the unconditional densities for the vector Ypmq,‚,j as

Ypmq,‚,j „ N p0N ,Cpmqq (12)

where, for m P t1, 2u, the symmetric N ˆN matrix, Cpmq “ ZSL2
pmqZ

J
S ` ZpmqD

2
pmqZ

J
pmq ` σ

2
pmqIN .

The data log-likelihood as a function of tZS,Zp1q,Zp2q,Lp1q,Lp2q,Dp1q,Dp2qu can be written as

`
`

ZS,Zp1q,Zp2q,Lp1q,Lp2q,Dp1q,Dp2q|Yp1q,Yp2q

˘

“

´
1

2

!

NpKp1q `Kp2qq log p2πq ´Kp1q log
`

|Cp1q|
˘

´Kp2q log
`

|Cp2q|
˘

´ tr
´

Yp1qY
J
p1qC

´1
p1q `Yp2qY

J
p2qC

´1
p2q

¯)

(13)

We derive analytical expression for the maximum likelihood estimates in Appendix A.

3.3 Implementation

In the single dataset setting, Tipping and Bishop (1999) show that the maximum likelihood estimates for

each factor are principal components of the data. We extend the result to the MD2S model. Doing so

allows for an efficient estimation strategy, whereby we can estimate ZS,Zp1q, and Zp2q directly using an

iterative algorithm, then recover the remaining estimates, xWpmq, pBpmq, pLpmq, pDpmq, afterwards. We prove

the validity of this strategy in the following proposition:

PROPOSITION 1 The maximum likelihood estimates for the shared and idiosyncratic subspaces can be

written as singular vectors of functions of the data. Specifically:
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1. The maximum likelihood estimates for Zpmq are proportional to principal components of YJ
pmqMpZSq

for m P t1, 2u.8

2. Denote ZS|pmq as theNˆQS matrix containing the firstQS principal components of YJ
pmqMpZpmqq.

Then,

(a) ZS 9 ZS|p1qΥp1q ` ZS|p2qΥp2q; with Υp1q `Υp2q “ IQS

where Υp1q and Υp2q are two diagonal matrices of sizeQSˆQS with υpmq;q “ diagpΥpmqqq ą 0

for m P t1, 2u and q P t1, . . . , QSu.

(b) ZS is selected to maximize tr
´

ZJSY
p1qY

J
p1qYp2qY

J
p2qZS

¯

.

Proof. See Appendix A.

The proposition leads directly to our estimation strategy.9 Our algorithm estimates the MD2S model

using an iterative procedure that updates the estimate of each subspace one at a time, enforcing the con-

straints in Equations 6–10 along the way. That is, for every iteration until convergence, the estimation

proceeds in two steps. Given the previous iteration estimate of the shared space ZS , we update pZp1q and

then pZp2q. Second, we partial the idiosyncratic spaces out to update pZS , which is a weighted average of

the first QS principal components of YJ
pmqMppZpmqq for m P t1, 2u. After convergence in each subspace,

we update our estimates of the remaining parameters.

Note that our algorithm allows the computational advantage of having to invert square matrices of

whichever size is smaller, N ˆ N or Kpmq ˆ Kpmq.10 For example, in the main empirical application

below we observe 100 voting members, 486 votes, but 2,532 words. Our algorithm is fit through inverting

matrices of size 100 ˆ 100 instead of 486 ˆ 486 or 2,532 ˆ 2,532, which gives us sizable computational

8Note that MpAq represents the annihilator matrix for A i.e., MpAq “ I´HpAq, with the projection matrix of A equal
to HpAq “ ApAJAq´1AJ; pAJAq´1 denotes the generalized inverse of pAJAq; and I is the commensurate identity matrix.

9See the Supplemental Appendix A for details.
10See Aldrich and McKelvey (1977, p. 117) and Tipping and Bishop (1999, Appendix B) for similar insights.
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gains. One advantage of our algorithm is that, at each step, it recovers estimates of the data, pYp1q and pYp2q,

conditional on current estimates of shared and idiosyncratic subspaces. Thus, all the information at hand

is used in estimation.

3.4 Uncertainty

Uncertainty in Scaled Locations. We estimate uncertainty for two parts of the MD2S model: the scaled

locations and the number of dimensions. For the scaled locations, we rely on the bootstrapping method-

ology introduced by Jacoby and Armstrong II (2014). Let trYb
p1q,

rYb
p2qu denote two bth bootstrapped sam-

ples, with b P t1, 2, . . . , Bu, where B is some large number, such as 1,000. The bootstrapped sample is

generated by fixing the number of rows and sampling Kpmq columns for each matrix, with replacement.

Uncertainty due to sampling error can be estimated through fitting MD2S to these bootstrapped estimates.

Distinguishing Scaled Locations from Random Noise. We present a statistical method for estimating

the number of dimensions while acknowledging that the first empirical consideration should be substan-

tive interpretability of the estimated subspaces. We recommend separating signal from noise dimensions

through the use of a permutation test (e.g. Keele et al., 2012). A permutation test requires estimating the

density of a test statistic on a set of datasets permuted such that under the null hypothesis, there is in-truth

no signal in the data, and then the observed value is compared to this simulated null distribution. We are

not the first to use a permutation test to separate an estimated scale from noise (see e.g., Mair et al. 2016

and references therein). However, these authors only compare the estimated weight on each dimension to

the mean under the simulated null, rather than estimate a p-value (Figure 1 in Mair et al. 2016).

For the permutation test, we assume that there is no structure in the data, so the subspace loadings are
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all zero. Formally,

H0
Lpmq;q

: Lpmq;q “ 0; (14)

H0
Dpmq;q

: Dpmq;q “ 0 (15)

where for all m P t1, 2u, Lpmq “ diagpLpmqq, and Dpmq “ diagpDpmqq. In this setting, Lpmq;q and

Dpmq;q represent the qth element (dimension) of Lpmq and Dpmq, respectively. Under these hypotheses,

the observed data is pure noise with no systematic structure, i.e. Ypmq “ Ωpmq. In other words, any

permutation of the data is equally likely. We permute the data, estimate dimension weights, and then

compare the statistic under the observed data to the statistic under the null distribution. To the extent that

the statistic is an outlier under the null hypothesis, we can argue that the null hypothesis is not accurate

and there is, in fact, some systematic relationship in the data.

Specifically, we permute the data such that within each column of Ypmq, the rows are shuffled. In this

case, in truth, there is no systematic relationship in the permuted data. Denote the rth permuted dataset

out of R total as rYr
pmq, with R some large number, say 1,000. For each permuted dataset, we calculate the

dimension weights, pLr
pmq and pDr

pmq. Then for each dimension q, those values are compared to the estimated

values on the non-permuted data, pLpmq and pDpmq.

Under this formulation, a p-value for dimension q in the shared subspace or idiosyncratic subspace can

be estimated as

ppS;q “

řR
r“1 1

´

pLr
p1q;q ď

pLp1q;q
¯

R
; pppmq;q “

řR
r“1 1

´

pDr
pmq;q ď

pDpmq;q
¯

R
; (16)

We adapt the test to our model by noting that the tests are not independent. The dimensions are

estimated in order of decreasing loadings, such that more explanatory dimensions are estimated before

14



less explanatory ones. Therefore, we take as our estimated dimensionality the first d dimensions such

that each dimension has an estimated p-value below a given threshold. In our empirical applications, we

calculate the estimated dimensionality pd “ q as the largest q such that dimensions 1 to q have estimated p-

values below 0.1. However, once the permuted p-value is estimated, this threshold can be be manipulated

to assess the sensitivity of the estimated number of dimensions.11

3.5 Extensions and Discussion of Method

Although our method to recover scaled locations is data-driven, its algorithm can be used in the estimation

of choice-theoretic utility models that recover ideal points under different behavioral assumptions (see, e.g.

Kim et al., 2018; Ladha, 1991). For example, we can turn the model into a quadratic utility model through

utilizing the latent normal representation of a probit model (Clinton et al., 2004; Albert and Chib, 1993;

Hare et al., 2015; Jackman and Trier, 2008), leaving it commensurate with a binary choice model. Now,

though, the researcher may combine votes on different issues and decompose the ideal points according to

our model. We can also utilize scale- and location-mixtures of normals to accommodate ordinal and count

data, as in Goplerud (2019); Albert and Chib (1993). In this framework, our probabilistic model is the

“M”-step of an EM routine, with the “E”-step as an adjustment to the observed data.12 Our concern here

is not with accommodating a particular class of data or formal choice structure, but instead to develop a

framework for integrating multiple sources in a single coherent fashion.

Our method relies on two sets of orthogonality conditions, requiring orthogonality both across sub-

spaces and across factors within a given subspace. The former, that the joint and idiosyncratic subspaces

are uncorrelated, is the central element of our identification strategy. The latter, though, can be relaxed.

11Formally, pdS “ argminqtq : ppS;q ą 0.1u ´ 1; pdpmq “ argminqtq : pppmq;q ą 0.1u ´ 1
12For example, in a latent probit model, this step involves adding to the fitted values the mean of a normal covariate truncated

at 0 and centered at the fitted value, with support above zero for observed values of “1” or below zero for observed values of
“0,” and support over the whole line for missing values. See Clinton et al. (2004); Albert and Chib (1993).

15



Factors can be recovered within each subspace using any method favored by the researcher. For example,

rather than identifying the factors in a given subspace through orthogonality conditions, the researcher

could instead allow for correlated factors and identify them with a prior; see Klami et al. (2013); Gupta

et al. (2011) for recent work. Placing a prior could shrink elements of the factor, returning a set of corre-

lated factors that may be easier to interpret, particularly in high-dimensional settings (see, e.g. Rockova

and George, 2016, for work in a factor model). In addition, a sparsity prior on the dimension weights

could be used to select the number of underlying dimensions (e.g. Kim et al., 2018; Hahn et al., 2012).

The assumption of uncorrelated factors guarantees identification and simplifies several of the derivations

in our estimation algorithm (see Supplemental Appendix A), but placing a different structure on the factors

in each subspace can be incorporated into our model.

We have also assumed that all of the Kpmq columns in Ypmq are on the same scale. If an analysis

requires combining data on different scales, say a combination of continuous and categorical outcomes,

we have two suggestions. First, if all of the data is continuous and approximately normal, each column

may be converted to a z-scale by subtracting off the mean and dividing by the sample standard deviation.

Recent literature has also suggested placing data on the same scale through an inverse z-transformation of

the empirical distribution function,

yzpmqi,j “ Φ´1

˜

1

N ` 1

N
ÿ

i1“1

1
`

ypmqi1,j ď ypmqi,j
˘

¸

(17)

where Φp¨q is the normal distribution function. For more on this and other methods, see Quinn (2004);

Hoff (2007); Murray et al. (2013).

The probabilistic PCA model allows us to recover point estimates even when there are more features

than observations, causing existing common factor analytic implementations to fail due to a rank defi-
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ciency. This data structure is unavoidable in text data, where word features may greatly outnumber units

of observation. A second approach, Weighted Multidimensional Scaling (WMDS) (Borg et al., 2013;

Borg and Groenen, 2005), returns a common index across several data sets, with a measure of how much

information each dataset contributes to the common index. MD2S optimally combines the two datasets to

extract a common factor, as in WMDS, as well as idiosyncratic factors, allowing the researcher to estimate

the location of features along each estimated scale. Doing so greatly aids interpretation, since we can use

both the observations (e.g., legislators) and their features (e.g.,words) to summarize the dimensions.

Lastly, we wish to qualify how the p-values should be incorporated into the process of interpretation.

Our permutation test offers a precise, but incomplete, measure of uncertainty; see Mair et al. (2016, esp.

778–779) for recent work on the topic.13 We advocate three different criteria for ascertaining whether an

uncovered dimension is systematic. First is the p-value. If a dimension is not easily distinguished from

noise, it should not be favored. This, of course, is necessary but not sufficient. The second criterion we

recommend is substantive significance, namely the proportion of the observed variance explained by the

method. The third criterion is whether the dimension has face validity. Every positive p-value threshold

leaves open the possibility of recovering a noise dimension, so the particular threshold should be selected

based off the researcher’s tolerance of false positives. In our simulation and application exercises, we

follow convention and implement a threshold of 0.1 below, but do so while emphasizing that the final

elements of evaluating the recovered dimensions rely crucially on substantive understanding.

4 Simulation Study

In order to assess the proposed method, we conduct a simulation study which tests MD2S across two

different elements: first, its ability to identify common and idiosyncratic factors, as well as its ability to

13We note that these authors advocate comparing the mean dimension weight under the null to the observed value rather
than calculating a proper p-value; see, e.g., Figure 1 in Mair et al. (2016).
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distinguish systematic dimensions from noise.14

4.1 Simulation Setup

The observed data consist of matrices Yp1q and Yp2q with N rows and Kp1q and Kp2q columns respectively.

N is varied along t20, 50, 100u and Kp2q along t20, 100, 250, 500, 1000, 2500, 5000u. Kp1q is held at 40.

The data are generated as

Yp1q “ 2ZS;1W
J
p1q;1 ` ZS;2W

J
p1q;2 ` 4Zp1q;1B

J
p1q;1 ` 2Zp1q;2B

J
p1q;2 `Ωp1q (18)

Yp2q “ 2ZS;1W
J
p2q;1 ` ZS;2W

J
p2q;2 ` 4Zp2q;1B

J
p2q;1 ` 2Zp2q;2B

J
p2q2 ` 2Zp2q;3B

J
p2q;3 `Ωp2q (19)

The latter means that are two shared dimensions denoted by the vectors ZS;q for q P t1, 2u. In terms of

loadings, we have that the first shared dimension is twice the size of the second one i.e., Lpmq “ p2, 1q. The

matrix Yp1q has two idiosyncratic dimensions and Yp2q has three. In addition, we have that the dimension

loading for the idiosyncratic subspaces are given by Dp1q “ p4, 2q and Dp2q “ p4, 2, 2q. All systematic

factors Zpmq;q, Wpmq;q, and Bpmq;q are drawn from a standard normal. The error matrices Ωpmq are scaled

such that the systematic component has twice the standard error of the random component, i.e. the true

R2 is p2{p2` 1qq2 “ 4{9 « 0.44. All simulations were run 1,000 times.

We designed this simulation with two goals in mind. First, we wanted the common factor in ZS to not

be the largest systematic factor of Yp1q and Yp2q. Uncovering the common factor involves avoiding the

idiosyncratic factors. Second, we wanted to have more variables than observations in one of the matrices.

We did so to mimic text data, where we have more terms than observations and regular factor analysis is

computational infeasible.

We compare our proposed algorithm to two additional methods that are able to recover a shared scale

14Replication materials are available at Enamorado et al. (2020a) and Enamorado et al. (2020a)

18



from multiple datasets. First, we use a variational approximation of the Bayesian Inter-Battery Factor

Analysis (V-BIBFA) model of Klami et al. (2013). The data generating process behind V-BIBFA is the

same as ours, which is based on a linear latent variable model. In contrast to MD2S, V-BIBFA targets

the factors or linear projections Wpmq and Bpmq instead of the latent factors ZS and Zpmq. This is done

by placing a sparse prior over the linear projections in order to separate a shared linear mapping Wpmq

from a specific one for each dataset m, Bpmq. Given an estimated posterior distribution of factors, scaled

locations can be recovered from a normal posterior.

We also compare MD2S to another scaling approach, weighted multidimensional scaling or “individual

differences scaling” (INDSCAL) as implemented in the R library smacof. Instead of focusing on the

scaling of two matrices of size N by Kp1q and N by Kp2q as done by MD2S, INDSCAL recovers a

shared scale from two matrices of dissimilarities of size N by N instead. First, a scale is recovered for

each individual dataset and a matrix of weights is estimated to map this individual scales into a shared

subspace.15 We use the Manhattan distance (L1 norm) as the measure of dissimilarity between the rows

of Yp1q and Yp2q to reduce them to square matrices of size N by N . In contrast to MD2S, INDSCAL does

not directly return shared and idiosyncratic variation. In order to extract data-specific scales orthogonal to

the shared subspace, we first estimate the shared latent dimension with the INDSCAL procedure. Next,

with a linear mapping we partial this scale out from the Kpmq outcomes in each original data matrix, Y˚
pmq.

Finally, each partialed out dataset is transformed into a squared dissimilarity matrix and scaled via metric

multidimensional scaling.

4.2 Results

Our primary interest is in recovering a scaling informed by both sets of datasets. Figure 1 presents the

results comparing estimates of the shared subspace and the true shared subspace. The figure is orga-

15We thank an anonymous reviewer for suggesting this comparison.
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Figure 1: Correlation between Common Subspace (ZS;1) and its Estimate, by Method. Sample size
is in columns (N P t20, 50, 100u) and Kp2q P t20, 100, . . . , 5000u is in rows. The x-axis ranges from 0
to 1 and measures the correlation between the true and estimated values. The proposed method, MD2S,
is compared to V-BIBFA and INDSCAL, as described in the text. All methods improve in N , but MD2S
outperforms the rest along N and Kp2q.

nized with sample size in columns (N P t20, 50, 100u) and the number of outcomes in Yp2q, Kp2q P

t20, 100, . . . , 5000u in rows. The x-axis ranges from 0 to 1 and measures the correlation between the true

and estimated values. The y-axis is a density scale. The methods presented include Multi-Dataset Mul-

tidimensional Scaling (MD2S), the proposed method; the variational Bayesian implementation of Klami
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et al. (2013) (V-BIBFA); the individual differences scaling (INDSCAL); and an estimate that is pure nor-

mal noise (Random).

Looking across the columns of figure 1, each method benefits from an increase in sample size and is

clearly differentiable from random noise. Table 3 in the Supplemental Appendix B.4 shows the mean

correlation with the true shared subspace across different settings.16 We see that, across settings, either

MD2S or V-BIBFA performs the best in recovering the true shared subspace. Particularly, for small N

and Kp2q, V-BIBFA slightly outperforms MD2S in recovering the first dimension of the shared subspace,

ZS;1. As Kp2q increases, the estimates in V-BIBFA deteriorate while MD2S improves. This is evidence

that, with large outcome data matrices, such as the ones generated by text data, our iterative algorithm is

able to recover a latent shared subspace that is closer to the true data generating process than available

alternatives. The solid gray line shows that INDSCAL regularly outperforms random noise, but performs

notably worse than MD2S and V-BIBFA.

Figure 2 contains the same set of results as Figure 1, but for the first dimension of the idiosyncratic

subspaces Zp1q;1 from Yp1q (left), and Zp2q;1 from Yp2q (right). Consider the left-side panel. The number of

features in Yp1q, Kp1q, is fixed across simulations, only Kp2q is changing. Looking down rows, we see that

the MD2S and V-BIBFA results for Zp1q;1 are almost invariant to changes in Yp2q. This is desirable: since

Zp1q;1 is idiosyncratic to Yp1q, we do not want changes in Yp2q to impact its estimate. Overall, INDSCAL’s

performance is relatively the worst, with a correlation with Zp1q;1 of just 0.2, whereas the correlation

with Zp1q;1 for MD2S and V-BIBFA are 0.97 and 0.91, respectively (with N “ 50 and Kp2q “ 500).17

Looking across columns, as N increases, we see that MD2S performs better than V-BIBFA, with a higher

correlation with the true subspace Zp1q;1 across all settings.

16For instance, with N “ 50 and K2 “ 500, the mean correlation with ZS are 0.97, 0.91 and 0.20, for MD2S, V-BIBFA
and INDSCAL, respectively.

17Table 3 in the Supplemental Appendix B.4 shows the average correlation with Zp1q;1 for each setting and method under
consideration.
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Figure 2: Correlation between Idiosyncratic Locations for Ypmq and their Estimates, by Method. The
left and right figures are structured identically to Figure 1. Consider the left figure. Looking down rows,
MD2S estimates for Zp1q;1 is invariant to changes in Yp2q. Other methods are similarly stable. Looking
across columns, as N increases, MD2S performs best. Now, consider the right-hand figure. Looking
across columns, all methods improve as N increases. As both N and Kp2q increase, the performance of V-
BIBFA deteriorates, while MD2S improves. For N P t50, 100u and Kp2q ą 100, MD2S is outperforming
all other methods in recovering Zp2q;1. WhenKp2q ě 1000 andN ě 50, MD2S recovers Zp2q;1 near exactly,
and quite a bit better than all other methods.

Next, consider the right-hand panel. Looking across columns, again, we see MD2S improving as either

N or Kp2q increases. As with the case for the shared subspace, the performance of V-BIBFA deteriorates

as Kp2q increases. In fact, MD2S outperforms V-BIBFA in recovering Zp2q;1 across all configurations.

Moreover, when Kp2q ě 500 and N ě 50, MD2S recovers Zp2q;1 near exactly and substantially better than

all other methods..18

The Supplemental Appendix contains additional simulation exercises that show the relative perfor-

18Table 4 in Appendix B.4 shows the average correlation with Zp2q;1 for each setting and method under consideration.
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mance of MD2S when we vary relevant features in the data related to bridging, sparsity, and factor corre-

lation across dimensions. Supplemental Appendix B.1 shows evidence that MD2S performs well at jointly

estimating scaled locations when we allow actors across datasets to differ and use only common items for

scaling. Supplemental Appendix B.2 focuses on adding different levels of sparsity, a common feature in

text data. We show that even when sparsity reaches 80% of the data, MD2S outperforms other methods

in recovering scaled locations. Finally, the Supplemental Appendix B.3 shows the robustness of MD2S

when we allow different levels of correlations across dimensions within each subspace.

4.3 Estimating Dimensions

We next illustrate the proposed method’s ability to separate systematic from noise dimensions through the

use of the permutation test presented in section 3.4.

Figure 3 presents the results of the permutation test described in section 3.4, for which five dimensions

were fit to the shared and idiosyncratic subspaces, with Kp1q “ 40. To evaluate the ability of MD2S to

recover the correct number of systematic dimensions per subspace, we use three settings. First, we set

N “ 50 and Kp2q “ 100 in panel (a). Moving from panel (a) to (b), we increased N to 100 but kept Kp2q

fixed at 100. Finally, moving from panel (b) to (c), we kept N “ 100, but increase Kp2q to 1,000. For

each of the above-mentioned settings, 1,000 total simulations with 1,000 permuted datasets per simulation

were used to estimate the p-value.

Across panels, if we classify values below p “ 0.10 as successful instances of uncovering signal from

noise, MD2S consistently recovers the first dimension of the the shared subspace. However, if the number

of observations (N ) is small as in panel (a), MD2S recovers the second shared dimension, which is not

noise, only 17% of the time. Increasing the number of observations, as done in panel (b), improves MD2S’

ability to recover the second shared dimension, as it is now detected 53% of the time. If both N and Kp2q
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Panel (a): N = 50, Kp2q = 100
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Figure 3: Estimating Dimensions. The three panels above present the results from the permutation test
for the number of dimensions under three different settings. We use the same data generation process
described in section 4, fixing Kp1q “ 40. For panel (a), N “ 50 and Kp2q “ 100; for panel (b), N “ 100
and Kp2q “ 100; and for panel (c), N “ 100 and Kp2q “ 1000. Values in the boxplot that fall below
the dotted line at p “ 0.10 were estimated as systematic dimensions; those above were considered noise.
As the three panels show, as we increase both the number of observations N and the number of features
(Kp2q) of the larger data set, MD2S is able to detect the correct dimensionality. Note that for each of the
1,000 simulations per setting, 1,000 permuted datasets were used to recover a p-value.
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are increased, as in panel (c), MD2S classifies the second shared subspace as signal 83% of the time.

A similar but less pronounced pattern, is observed for the two idiosyncratic subspaces. The noise

dimensions, 3-5 in Yp1q and 4 and 5 in Yp2q are never selected. However, dimensions 2 for Yp1q and 3 for

Yp2q which contain systematic information, are difficult to recover for MD2S when both N and Kp2q are

small. In panel (a), MD2S correctly classifies dimensions 2 of Yp1q and 3 of Yp2q as signal 73% and 46% of

the time, respectively. If the number of observations and features of our larger data set are increased, as in

panel (c), then MD2S correctly classifies dimension 2 of Yp1q as signal 93% of the time, while dimension

3 of Yp2q is always correctly classified as signal.

5 Combining Senate Roll Call and Text Data

In this empirical exercise, we apply MD2S to data from speech and roll call votes in the 112th U.S.

Senate. The data consist of a term document matrix of 2532 unique terms constructed from senators’ floor

speech found in the Congressional Record, as well as the final roll call vote matrix of 486 binary votes

taken during this session.19 The data was previously analyzed using the Sparse Factor Analysis (SFA)

methodology introduced in Kim et al. (2018), who found two dimensions in the space jointly informed

by words and votes. The primary dimension was qualitatively the same as the ideological dimension

identified by any common scaling method applied to roll call votes from the U.S. Senate (e.g. Clinton

et al., 2004, Figure 1). The second dimension was a “leadership” dimension ranging from party leaders,

on one end, to rank and file members on the other.

We present the results obtained from MD2S in two parts. First, we use our permutation test to assess

19Speech data is collected by the Sunlight Foundation and roll call votes are obtained from VoteView. To create the
document-term matrix, senators’ floor speech is preprocessed following standard practices by stemming, eliminating stop-
words, and analyzing all unigrams and bigrams in the text data. Infrequent terms that are not used by at least ten senators are
trimmed. See Kim et al. (2018) for a detailed discussion of the construction of the document-term matrix. Our results are
robust to different trimming rules and the inclusion of bigrams (Denny and Spirling, 2018); see Supplemental Appendix B.5.2
for details.
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which latent dimensions may not be noise. Second, we examine the substance of the scaled locations in

the first shared subspace informed by both words and votes, as well as the first idiosyncratic dimensions

specific to each type of data. We show the point estimates of the scaled locations for each senator in the

results below. Results of the bootstrapped confidence intervals as described in Section 3.4 can be found in

the Supplemental Appendix B.5.4.

We inform the scaled locations with available senators’ characteristics.20 In particular, we allow the

latent variables to be a function of senators’ party, gender, and seniority. We also account for

measures of the number and type of committee assignments of each senator in this session.21 We include

membership, which is given by the total number of committees a senator belongs to. The variable

leadership is a representation of the number of committees where a senator holds a leadership posi-

tion. The remaining covariates: agricultural, economics, and security, measure the propor-

tion of committees a senator belongs to that deal with these issues.22 In the Supplemental Appendix B.5.5,

we recover the estimated coefficients associated to each subspace on the set of senators’ covariates.

Estimating dimensionality. Table 1 presents the results from the permutation test presented in section

3.4 applied to the Senate data. The table contains the results for the shared subspace and the two idiosyn-

cratic dimensions on 5,000 permuted datasets.

Using any p-value threshold between 0.01 and 0.71 gives us one statistically significant dimension

across the shared and idiosyncratic subspaces. In terms of explained variance, the first shared subspace

explains most of the joint variance across votes and words (i.e., 96%). For the idiosyncratic subspaces the

first dimension explains 49% and 39% of the variance unique to votes and words, respectively.

20 As a robustness check, in Supplemental Appendix B.5.1, we present and discuss the results without using senators’
characteristics – which overall are quite similar to the results presented here.

21Senate committee assignments are obtained from Stewart and Woon (1998).
22agricultural include the committees of Agriculture, Nutrition and Forestry, Energy and Natural Resources, and

Environment and Public Works. economics include the committees of Appropriations, Banking, Housing, and Urban Affairs,
Budget, and Finance. security includes the committees of Armed Services and Homeland Security and Governmental
Affairs.
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Dimension
(1) (2) (3) (4) (5)

Shared subspace p-value 0.00 1.00 1.00 1.00 1.00
% 95.64 2.17 0.89 0.74 0.55

Word subspace p-value 0.00 0.72 1.00 1.00 1.00
% 39.00 20.23 16.01 13.10 10.67

Vote subspace p-value 0.00 1.00 1.00 1.00 1.00
% 49.21 17.64 12.78 11.40 8.97

Table 1: Permutation test. % represents the percentage of explained variance for each dimension. Using
any p-value threshold between 0.01 and 0.71 gives us two dimensions for the shared subspace and three
for the idiosyncratic word and votes subspaces. Number of permuted datasets: 5,000.

Scaled locations. Since we are placing the words and the senators in the same subspace, words at one

extreme are most used by legislators at the same extreme. Thus, connecting the words with the legislators

greatly aids in interpretation, as we do not only have the locations of the legislators to go by in ascertaining

the substantive meaning of the dimension.

We present the scaling estimates of the first shared dimension in Figure 4. On the left panel, we present

word clouds containing the top 100 positive (in red) and top 100 negative (in blue) words according to their

weights in the estimated matrix of factors for the text data, xWpwordsq. The size and color intensity of each

word in the wordclouds are proportional to the absolute value of the estimated weights, so words of one

color are estimated as near legislators of the same color.

The right panel of figure 4 presents the estimated location of senators in the shared subspace ẐS . For

the shared subspace, we find the estimated weights balancing the proportion of information coming from

votes and words to be, on average, 33% and 67%, respectively.23

The shared subspace differentiates the party, placing Republicans towards the top and Democrats to-

wards the bottom. Our estimates are highly correlated with the SFA ideal point estimates at 0.97. With

respect to scaling approaches using only data on roll call votes, our first shared dimension correlates with

23This is parameter diagpΥp1qq1 in Proposition 1
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DW-NOMINATE (Poole, 2005) and IDEAL (Clinton et al., 2004) at 0.94 and 0.95, respectively. There-

fore, the shared scale is consistent with the ideological dimension uncovered from a spatial vote choice

model and from its extension to word choice.24

These correlations serve as a validation exercise, as DW-NOMINATE and IDEAL have proven to be

robust methods to extract information exclusively from roll call votes. Thus, by adding words into the

equation in a structured fashion, MD2S is able to recover other interesting patterns, while also recovering

the expected ideological dimension from the vote data obtained by popular methods such as DW-Nominate

and IDEAL.25

The words anchoring each dimension are similar to those identified in Kim et al. (2018, see Figure

3, righthand plot). In particular, we find parliamentary control terms on the side associated with the

governing Democratic majority (meet session, author meet, conduct hear) with fiscal terms on the side

associated with the Republican minority, (stimulus, trillion, budget, rais tax, debt) commensurate with

the party’s professed fiscal concerns. If we move past the parliamentary terms, the first set of substantive

terms on the Democratic side are also fiscal in nature but diametrically opposite the Republicans: wealth-

iest, middleclass, tax break, tax cut, and hear entitl. Therefore, by recovering the associated terms with

each scaled location, we find that the first shared dimension captures well the main differences between

Democrats and Republicans in terms of fiscal policy, as identified by the words most associated with each

side of the scale.

In terms of idiosyncratic subspaces, we first focus our attention on the vote subspace. As illustrated

by Figure 5, we find a significant first dimension that organizes voting, but is unrelated to floor speech.

On one extreme, this dimension is anchored by fiscal conservative senators DeMint, Lee, Toomey, Paul,

24The shared scale recovered by V-BIFBA applied to the Senate data correlates with our shared scale at 0.89. The correlation
of V-BIFBA with SFA, DW-Nominate and IDEAL is 0.91, 0.91 and 0.95, respectively.

25 See Supplemental Appendix B.5.3 for the overall correlations, within-party correlations, and different scatter plots show-
ing the similarities across different scaling methods.
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Figure 4: Shared Subspace Locations Estimated via MD2S for the Members of the 112th U.S. Senate.

and Risch, noted Tea Party and small government enthusiasts. In terms of the covariates included in

the estimation, senators assigned to a leadership position in committees related to agricultural and

economic issues are significantly correlated with this extreme of the scale. The other extreme of the vote

subspace is anchored by prominent and more moderate senior senators like Schumer, Boxer, and Collins,

who have been reelected at least once and hold a leadership position in a Senate committee. As shown

in the Supplemental Appendix, we find that seniority and more leadership assignments, as well

as membership in committees focused on national security issues, are systematically associated with
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positive locations in the vote subspace.

Spatial Location (First Dimension)
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Figure 5: Idiosyncratic Vote Subspace Locations Estimated via MD2S for the Members of the 112th
U.S. Senate.
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Figure 6: Idiosyncratic Word Subspace Locations Estimated via MD2S for the Members of the 112th
U.S. Senate. First Dimension.

Similar to the results for the shared subspace, Figure 6 shows senators’ locations in the first dimension

of the word subspace along with the word clouds of the top 100 words associated with each side of the

scale given by the estimated text factor pBpwordsq. In terms of the scaled locations, we have on one end,

senators who put emphasis on national security issues, such as prominent members of the Committees on

Armed Services and Homeland Security, as well as Governmental Affairs like senators Johnson, Akaka,

and Collins. The associated terms on this extreme relate to the military (e.g, command, deploy, navi, air
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forc), as well as personnel and privacy-protection issues (e.g., privaci, personnel, civilian). The opposite

side of the words subspace is anchored by senators of both parties (Sanders, Stabenow, Sessions and

Thune) addressing budget issues, with associated terms such as tax, deficit, debt, money and medicare.

Notice that the estimated locations in these idiosyncratic vote and words dimensions allows us to

further differentiate senators found to be moderate in the shared dimension, but that have substantive

differences specific to either their roll-call or floor speech behavior.

6 Conclusion

As we enter a period of “big data,” we encourage political scientists to think not just of analyzing large

datasets but also how to combine data from disparate sources. We present such a method here, for scaling

data from two separate datasets. The method, MD2S, successfully incorporates information from two

different data sources, generating scaled locations with a higher internal validity than analyzing the two

datasets separately. We include methods for checking validity, separating systematic dimensions from

noise, and a way to relate scaled locations to covariates, all fit using an efficient statistical algorithm.

The method also allows the user to use the scaled locations from both datasets to help infer the meaning

of the latent dimensions. In our empirical application, scaled locations were also associated with words

that let us better interpret the meaning of the estimated latent scales. The idiosyncratic subspaces also

offers new insights, allowing us to identify dimensions in which the members at the extremes of the

shared subspace differed.

We anticipate several ways in which this project can be moved forward. First, we have presented the

method in a geometric, least squares framework. Placing the method in a probabilistic framework will

allow for an extension to commonly used Bayesian techniques (Hare et al., 2015; Tipping and Bishop,

1999). We also plan to extend the method to allow for cross-time comparisons, so as to place multiple
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observations in the same space over time. As noted above, an important avenue of future research is to

scale information coming from more than two datasets e.g., scaling Senators’ roll calls, floor speeches, and

social media statements. In principle, our framework and identification assumptions can be generalized

to multiple databases. We leave for future research an empirical implementation of this extension to the

method.

Appendix

A Proof of Proposition 1

We first derive score conditions for the IBFA, extending the model of Tipping and Bishop (1999). We then

implement a Minorize-Maximization (MM) algorithm for estimation (for the use of this class of algorithm

in scaling, see Borg and Groenen, 2005). The estimation procedure works by deriving a minorizing

function that lies weakly below the true objective, maximizes, and iterates to convergence.26

The model and likelihood. This section follows Tipping and Bishop (1999). The two data sets, Yp1q

and Yp2q are modeled in terms of a shared subspace ZS as well as dataset specific subspaces, Zp1q and

Zp2q, such that for column j:

Ypmq,‚,j|Wpmq,j,‚, Bpmq,j,‚,Lpmq,Dpmq „ N pZSLpmqW
J
pmq,j,‚ ` ZpmqDpmqB

J
pmq,j,‚;σ

2
pmqINq (20)

for m P t1, 2u. Marginalizing over Wpmq,j,‚ and Bpmq,j,‚, gives the unconditional densities for the

vector Ypmq,‚,j as

Ypmq,‚,j „ N p0N ,Cpmqq (21)

26The Q function in the popular EM algorithm is a minorizing function.
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where, for m P t1, 2u, the symmetric N ˆN matrix, Cpmq “ ZSL2
pmqZ

J
S ` ZpmqD

2
pmqZ

J
pmq ` σ

2
pmqIN .

The data log-likelihood as a function of tZS,Zp1q,Zp2q,Lp1q,Lp2q,Dp1q,Dp2qu can be written as

`
`

ZS,Zp1q,Zp2q,Lp1q,Lp2q,Dp1q,Dp2q|Yp1q,Yp2q

˘

“

´
1

2

!

NpKp1q `Kp2qq log p2πq ´Kp1q log
`

|Cp1q|
˘

´Kp2q log
`

|Cp2q|
˘

´ tr
´

Yp1qY
J
p1qC

´1
p1q `Yp2qY

J
p2qC

´1
p2q

¯)

(22)

Denoting L2
p2q “ λ2L2

p1q, the score conditions for the shared subspace model are

B`p¨q

BZS

“

"

1

2

´

Kp1qC
´1
p1q `Kp2qC

´1
p2q

¯

´
1

2

!

C´1
p1qYp1qY

J
p1qC

´1
p1q ` λ

2C´1
p2qYp2qY

J
p2qC

´1
p2q

)

*

ZSL2
p1q (23)

B`p¨q

BZpmq
“

"

1

2
KpmqC

´1
pmq ´

1

2
C´1
pmqYpmqY

J
pmqC

´1
pmq

*

ZpmqD
2
pmq (24)

It may appear at first that Zpmq and ZS are solutions to an eigen problem of the form AZ “ λZ. This

does not immediately follow from Equations (23) - (24), though, because Zpmq and ZS enter into Cpmq

nonlinearly. The work in the proof below comes from using the identification conditions (equations 6 to

10) and making use of the Woodbury identity to isolate ZS in C´1
pmq. With this done, it is apparent that the

maximum likelihood estimates are indeed singular vectors. We formalize that result in the Proposition 1,

which is given in the text.

Proof of Proposition 1.

1. We proceed in two steps. First, we simplify the term C´1
pmqZpmqD

2
pmq, leaving it a function of only

Zpmq and not ZS . Second, we substitute this simplified term back into the score conditions, showing

that Zpmq are singular vectors.
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First, denote Ã “ pZpmqD
2
pmqZ

J
pmq ` σ

2
pmqINq and Ũ “ pL´2

pmq ` ZJS Ã´1ZSq. Then,

C´1
pmqZpmqD

2
pmq “ C´1

pmqMpZSqZpmqD
2
pmq ZS K Zpmq

“

!

Ã´1
´ Ã´1ZSŨ´1ZJS Ã´1

)

MpZSqZpmqD
2
pmq Woodbury identity to C´1

pmq

“ pZpmqD
2
pmqZ

J
pmq ` σ

2
pmqINq

´1MpZSqZpmqD
2
pmq

where the last line follows from distributing and that Ã´1 is not a function of ZS , leaving the second

summand linear in ZS and therefore annihiliated by MpZSq. We further simplify through reapplying

the Woodbury identity to pZpmqD2
pmqZ

J
pmq ` σ

2
pmqINq

´1:

“
1

σ2
pmq

"

IN ´ Zpmq

´

σ2
pmqD

´2
pmq ` ZJpmqZpmq

¯´1

ZJpmq

*

MpZSqZpmqD
2
pmq

“ MpZSqZpmq rDpmq

where we denote the diagonal matrix rDpmq “
1

σ2
pmq

tIQpmq
´ pσ2

pmqD
´2
pmq ` IQpmq

q´1uD2
pmq. That this

matrix is diagonal is crucial to our result, illustrating where the advantage of the PPCA enters our

results.
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Substituting into the score conditions gives:

KpmqC
´1
pmqZpmq ´

1

σ2
pmq

C´1
pmqYpmqY

J
pmqMpZSqZpmq rDpmq “ 0NˆQm

ñ KpmqZpmq ´
1

σ2
pmq

YpmqY
J
pmqMpZSqZpmq rDpmq “ 0NˆQm Pre-multiply Cpmq

ñ KpmqMpZSqZpmq ´
1

σ2
pmq

MpZSqYpmqY
J
pmqMpZSqZpmq rDpmq “ 0NˆQm Pre-multiply MpZSq

ñ KpmqZpmq ´
1

σ2
pmq

MpZSqYpmqY
J
pmqMpZSqZpmq rDpmq “ 0NˆQm MpZSqZpmq “ Zpmq

ñ KpmqZpmqIQpmq
´

1

σ2
pmq

VpmqZpmq rDpmq “ 0NˆQm ,

where we define Vpmq ” MpZSqYpmqY
J
pmqMpZSq in the last line. Considering this last equality

columnwise shows that each column of Zpmq is a singular vector of Vpmq, which was to be shown.

2. Denote ZS|pmq as the first QS principal components of YJ
pmqMpZpmqq. To prove part (a), just repeat

the proof for point 1 using MpZp1qq and MpZp2qq in equation (23). Then, by a similar argument,

the maximum likelihood estimates of ZS are proportional to singular vectors of a weighted average

of Yp1qY
J
p1q and Yp2qY

J
p2q. To prove part (b), we maximize a minorizing function that lies weakly

below the true likelihood function. To generate the minorizing function, note

YJ
pmqYpmq ě E

`

YJ
pmqYpmq|ZS,Zpmq, σ

2
pmq

˘

“ Cpmq

ñ
`

YJ
pmqYpmq

˘´1
ď C´1

pmq
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with the inequalities meant in a matrix sense. Define

Q
´

ZS,Zp1q,Zp2q
ˇ

ˇYp1q,Yp2q,C
´1
p1q,C

´1
p2q

¯

“

´
1

2

"

NpKp1q `Kp2qq log p2πq `Kp1q log p|C1|q `Kp2q log p|C2|q

` tr
`

C´1
2 Yp2qY

J
p2qYp1qY

J
p1qC

´1
1 `C´1

1 Yp1qY
J
p1qYp2qY

J
p2qC

´1
2

˘

*

By construction,

Q
´

ZS,Zp1q,Zp2q
ˇ

ˇYp1q,Yp2q,C
´1
p1q,C

´1
p2q

¯

ď `
`

ZS,Zp1q,Zp2q
ˇ

ˇYp1q,Yp2q

˘

. (25)

Following the steps in the proof of part (1), ZS is clearly proportional to a left singular vector

of a weighted average of :A and :AJ, where :A “ Yp2qY
J
p2qYp1qY

J
p1q. That the maximizer of the

minorizing function at convergence is also the ML estimate follows from invariance of the ML

estimator.
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