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Abstract

We introduce a model that extends the standard vote choice model to encompass text.

In our model, votes and speech are generated from a common set of underlying preference

parameters. We estimate the parameters with a sparse Gaussian copula factor model that

estimates the number of latent dimensions, is robust to outliers, and accounts for zero inflation

in the data. To illustrate its workings, we apply our estimator to roll call votes and floor speech

from recent sessions of the US Senate. We uncover two stable dimensions: one ideological and

the other reflecting to Senators’ leadership roles. We then show how the method can leverage

common speech in order to impute missing data, recovering reliable preference estimates for

rank-and-file Senators given only leadership votes.
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1 Introduction

The spatial model is a staple of political analysis, and methodologists have grown adept at estimat-

ing its parameters from roll call data (e.g., Clinton, Jackman and Rivers, 2004; Poole and Rosenthal,

1997). A more recent literature has worked to extract ideological locations from text (e.g. Slapin

and Proksch, 2008; Laver, Benoit and Garry, 2003).

Political actors, though, will often generate both text and votes. We introduce a means by

which the two forms of data can be integrated into a single framework. First, we construct a choice-

theoretic model of both vote and word choice. The model applies when a single preference structure

underlies the political actors’ speaking and voting behavior. As our model extends the voting model

to word choice, we inherit both the strengths and shortcomings of the standard spatial model (e.g.

Ladha, 1991; Clinton, Jackman and Rivers, 2004). We then introduce a statistical method, Sparse

Factor Analysis (SFA), for estimating the spatial locations of legislators, votes, and words. The

method estimates the number of latent dimensions and links votes and speech in a common factor

analytic framework (e.g., Park and Casella, 2008; Murray et al., 2013). As the formal and statistical

models are tightly connected, we refer to both as “SFA” throughout.

Our model deals with several challenges in estimating preferences from observed vote and text

data. First, our formal model allows us to estimate preferences that are jointly revealed by both

words and votes. This differs from earlier works that have modeled words and votes as arising

from separate processes (Gerrish and Blei, 2011; Lauderdale and Clark, 2014). Second, rather than

assume the number of latent dimensons (as in Laver, Benoit and Garry, 2003; Hopkins and King,

2010; Gentzkow and Shapiro, 2010; Blei, Ng and Jordan, 2003; Spirling, 2012), we use shrinkage

methods to estimate the number of latent dimensions (Park and Casella, 2008). Third, our estimator
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implements a model of word counts that accounts for the problems of “zero-inflation” and extreme

outliers in the data (Lowe and Benoit, 2011).

We illustrate the proposed methods by applying them to eight recent sessions of the US Sen-

ate. We recover two stable dimensions. The first, running left-right, corresponds closely with the

dimension uncovered by standard methods such as DW-NOMINATE (Poole and Rosenthal, 1997)

and IDEAL (Clinton, Jackman and Rivers, 2004). The second dimension we encounter is revealed

by the text data; it places the leaders of both parties at one end of the spectrum, and the chamber’s

rank-and-file members at the other.

To demonstrate the internal validity of combining speech and voting records, we reestimate

the model while suppressing voting data, first from a few Senators, and then from all but party

leadership. Our estimator nevertheless continues to recover their relative rankings on both of the

dimensions we uncover.

The paper proceeds as follows. In Section 2, we introduce our choice theoretic model and

estimation strategy. We then compare the method to several existing alternatives. In Section 3,

we apply the method to recent sessions of the US Senate. The final section concludes. The open-

source software SparseFactorAnalysis, will be made available as an R package for implementing the

proposed methods.

2 SFA: The Proposed Method

In this section, we develop a choice theoretic spatial model that establishes a basic homology

between voting and speech: the votes cast and words uttered by the same legislator are both

anchored to the same ideal point. In Section 2.1, we introduce our method Sparse Factor Analysis

(SFA) for estimating these ideal points using vote data, word data, or a combination of the two.
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Section 2.2 describes specific challenges that we overcome in estimation. We discuss the key ideas

and assumptions embedded in our model and the SFA estimator in Section 2.3.

2.1 The Model

Voting and speaking are two of the most studied and illuminating political acts. Often, the same

actors will do both. Yet it is common for exemplary academic studies to take advantage of only

one type of data, not both, thereby discarding useful information about the spatial orientation of

the speakers. These are works that either scale a binary choice and leave readily available text

alone or model text, but do not connect the text to easily accessible voting data. For example,

Barbera (2015) scales the choice to follow Twitter users but does not include the content of tweets

in the scaling. Similarly, Ho and Quinn (2008) scales newspaper editorials that register opinions

on Supreme Court cases, but the study does not include the content of the editorials. Conversely,

Quinn et al. (2010) estimate a topic model of Congressional debates, but they do not including

roll call voting data, while Elff (2013) and Lo, Proksch and Slapin (2014) scale the text of election

manifestos, and yet do not include any vote data. Recent works that do combine words and votes

estimate model vote choice for each of a set of estimated topics (e.g. Lauderdale and Clark, 2014).

Words do not enter the actors’ choice set. We have developed a model in which votes and speech

are generated from a common set of underlying preference parameters and a statistical method for

estimating these parameters.

Observed data. For each member l P t1, 2, . . . , Lu, we register how that individual voted on

proposal p P t1, 2, . . . , P u: Vlp P t0, 1u, where Vlp “ 1 corresponds to an “Aye” vote, while “Nay”

votes map to Vlp “ 0. We also observe each legislator’s count for term w: Tlw P t0, 1, 2, . . .u. We

operationalize these terms as stemmed bigrams.

3



Vote Choice Our latent space model of voting parallels the development of Ladha (1991) and

Clinton, Jackman and Rivers (2004), where preferences and choices are embedded in a Euclidean

space. We denote by xld the dimension d P t1, 2, . . . , Du coordinate of legislator l’s most preferred

outcome. Likewise, each policy alternative subject to a vote is itself associated with a D-dimensional

location in the same latent space as the legislators’ locations. We denote the coordinate for the

dth dimension of the proposal by zayepd while we label the dimension d coordinate for the status quo

against which it is compared as znaypd . When a legislator chooses whether to vote for the proposal,

she compares the sum of the squared distances between her most preferred coordinates and those

of the proposal with the comparable sum of squared distances for the status quo. We allow some

dimensions to be more important than others; ad ě 0 denotes the weight placed on dimension d. We

join Clinton, Jackman and Rivers (2004) in assuming that the dimension weights are the same for

all legislators. Higher values of ad are associated with more important dimensions, while dimensions

with a weight of 0 are irrelevant. This gives us the legislator’s decision rule:

U vote
l

`

Aye; txldu
D
d“1, tz

aye
pd u

D
d“1

˘

´ U vote
l

`

Nay; txldu
D
d“1, tz

nay
pd u

D
d“1

˘

“ ´
1

2

D
ÿ

d“1

adpz
aye
pd ´ xldq

2
´

˜

´
1

2

D
ÿ

d“1

adpz
nay
pd ´ xldq

2

¸

´ ε̃votelp (1)

where ε̃votelp is a standard normal random variable. Clinton, Jackman and Rivers (2004) restrict the

nonzero dimension weights to all equal 1, whereas we allow more general weights; our model of the

decision whether to vote for the proposal is isomorphic with theirs.

Simplifying expression (1) and combining terms gives us the legislator’s latent disposition to

cast an “Aye” vote V ˚lp , such that larger values of the latent variable means the member is more
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likely to favor the proposal.1

V ˚lp “ cvotel ` bvotep `

D
ÿ

d“1

adxldg
vote
pd ´ εvotelp (2)

where cvotel and bvotep are individual- and proposal-specific effects, ad and xld are the dimension

weights and ideal points described above, and gvotepd is the signed distance between the “Aye” and

“Nay” alternatives. The terms cvotel and bvotep are amalgams of structural parameters that serve

to model the baseline propensity for a given proposal to receive support and a given member to

support any proposal.

Term choice. We now extend the voting model to the choice of terms. We take as the choice

variable the emphasis legislator l places on term w: T ˚lw. While we do not observe this emphasis

directly, it maps to an observed count for each term, Tlw. The member chooses T ˚lw on the basis

of its proximity to her ideal point, and various features of its pertinence: the aptness of the term

to the issues of the day; sw, the verbosity of the legislator; vl, and the degree to which the word

has become hackneyed from overuse. Ideological proximity is the distance from her ideal point to

the term’s spatial location. If the member only selected terms on the basis of ideology, then she

would simply utter her most preferred term ad infinitum, regardless of external circumstance. But

members do not choose terms this way. One countervailing concern is the aptness of a term to the

debate at hand pswq – some terms are more appropriate in some years than others; for example, we

find discussion of mortgage backed securities in 2009 that were not relevant in 1999. The frequency

of word use is also a function of a legislator’s baseline verbosity pvlq. If ideological proximity and

aptness were the only factors at work then in each session each legislator would monotonously

repeat the political buzzword of her faction ad nauseam. Actual legislators don’t do this, because

the value of emphasizing a given term diminishes as it becomes shopworn with overuse. We build

1For a specification of the utility functions and a full derivation, see the online supplemental materials.
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this into our model by inducing a negative quadratic term in T ˚lw. Formally, the choice is taken

from maximizing:

U term
lw

`

T ˚lw; txldu
D
d“1, tz

term
wd u

D
d“1

˘

“ ´
1

2
T ˚lw

D
ÿ

d“1

adpxld ´ g
term
wd q

2

looooooooooooooomooooooooooooooon

Ideology

`T ˚lw

ˆ

sw ` vl ´
1

2
T ˚lw ´ ε̃

term
lw

˙

loooooooooooooooooomoooooooooooooooooon

Pertinence

(3)

Rearrangement and substitution give an optimal choice of the form:

T ˚lw “ cterml ` btermw `

D
ÿ

d“1

adxldg
term
wd ´ εtermlw (4)

where cterml and btermw are individual- and term-specific effects. The ideal points and dimension

weights, ad and xld, are precisely those from the vote equation.

While expression (4) is similar to the criterion given in expression (2) for choosing whether to

vote in favor of or against a bill, the choice of how intensely to emphasize a term depends on the

characteristics of that term, whereas the vote choice hinges on the difference between the proposal

and the status quo. That is, while it is well known among legislative scholars that someone might

vote in favor of a bad bill if it is presented as the alternative to an even worse status quo, politicians

are free to emphasize terms that express their most preferred positions, subject to those terms being

apt to the discussion at hand, and not having already become hackneyed by overuse.

Placing votes and words in a common space. The lynchpin of the SFA model is the collection

of legislator preference parameters
 

txldu
D
d“1

(L

l“1
. While it has become standard to use a latent space

to model vote choice, see Ladha (1991); Clinton, Jackman and Rivers (2004), or a latent space for

term choice, Elff (e.g. 2013), SFA integrates both sets of observed outcomes within a common latent

space (e.g. Murray et al., 2013).

Operationalizing the Model. We assume the error terms εvotelp and εtermlw , are independent and

each follow a standard normal distribution. As in Clinton, Jackman and Rivers (2004) positive
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values of the voting propensity (i.e., V ˚lp ě 0) result in votes in favor of proposal p: Vlp “ 1, while

negative propensities (i.e., V ˚lp ă 0) are associated with “Nay” votes: Vlp “ 0. We connect the term

use propensities T ˚lw with the observed frequencies Tlw through a set of cutpoints; tτku
8

k“´1 such

that the probability of observing a given term count is the probability of the latent variable falling

between two adjacent cutpoints:

PrpTlw “ k|¨q “ Pr pτk´1 ď T ˚lw ă τk| ¨q

“ Φ

˜

τk ´ c
term
l ´ btermw ´

D
ÿ

d“1

adxldg
term
wd

¸

´ Φ

˜

τk´1 ´ c
term
l ´ btermw ´

D
ÿ

d“1

adxldg
term
wd

¸

(5)

with the convention that τ´1 “ 8 and Φp¨q denotes the distribution of the standard normal density.

2.2 Estimation

The SFA model embeds a sparse factor analytic model of choice in a Gaussian latent space that

combines the observed discrete data on votes and word counts. We now turn to the question of

estimation.

Statistical Challenges. The model developed in the last section integrates voting and speech

using a common set of preference parameters inside a shared latent space; we must now estimate

the connection of this latent space with binary voting choices and, at the same time, with the term

counts found in legislators’ speeches. Next, we face the question of how many dimensions in the

latent space–to assume an answer is to face the twin dangers of artificially truncating the latent

space if one conjectures too few dimensions, or of over fitting “nonsense dimensions” that add noise

to the estimator. Finally, term count data is characterized by “zero inflation:” the legislator-term

matrix contains a surfeit of zero counts compared with what Poisson models of speech would lead

us to expect.

To connect vote and speech data in a common space, we estimate a Gaussian copula factor model
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for mixed scale data (e.g. Murray et al., 2013). This entails extending the Bayesian estimation

framework of Clinton, Jackman and Rivers (2004) to encompass text data. To address the question

of the dimensionality of the latent space, our estimator selects a sparse model of the number of

dimensions (Park and Casella, 2008; Tibshirani, 1996). We contend with the issue of zero inflation

that infests text data by estimating a flexible semiparametric cutpoint that accounts for and adjusts

to the zero counts one encounters in text.

For all the parameters except the cutpoints tτku
8

k“´1 and the dimension weights, ad, we assume

conjugate priors that are normal for mean parameters and inverse-gamma for variance parameters.

The separate mean-zero normal priors over each of the term and individual specific effects, whose

number grows with the sample size, place us in a Bayesian framework where the incidental parameter

problem (Neyman and Scott, 1948) does not arise. We likewise place a Jeffreys hyperprior over the

variance.

Gaussian copula factor models. Our paper joins the strand of literature on semi-parametric

Gaussian copulas for discrete data spawned by Hoff (2007) and applied to factor analysis by Murray

et al. (2013). Accordingly, the error terms εvotelp and εtermlw are assumed independent and identically

distributed standard normal variables. The connection from the latent space to the voting data via

a probit link is a standard element of the Bayesian item response theory (IRT) model (see Jackman

(2009)). Whereas the probit link (Clinton, Jackman and Rivers, 2004; Albert and Chib, 1993)

imposes a cut point of 0 on the choice of whether to vote in favor of a proposal, we estimate a

richer set of cutpoints tτku
8

k“´1 using a flexible semiparametric model for the marginal distribution

for term frequencies. The model is semiparametric in that it uses a nonlinear function of the ranks

to generate the cutpoints.
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Estimating the number of dimensions. We place a Laplacian (LASSO) prior of Park and

Casella (2008) over the dimension weights (for similar work, see Murray et al., 2013; Pitt, Chan

and Kohn, 2006; Hahn, Carvalho and Scott, 2012):

Prpadq „
λ

2
expp´λ|ad|q. (6)

This prior provides a principled means of culling erroneous dimensions from the estimated model.

As part of our estimation, we naturally recover the maximum likelihood estimate of ad, pa
ML
d . Given

λ, the maximum a posteriori estimate (MAP) estimate for ad is:

paMAP
d “

$

’

’

’

&

’

’

’

%

paML
d ´ λ aML

d ą λ

0 aML
d ď λ

(7)

The threshold parameter λ is estimated within a Gibbs sampler (Park and Casella, 2008). Our prior

over the dimension weights leads to ex post estimates of some weights as zero, as we describe below.

For earlier work using a variable selection prior for matrix subspace selection, see in particular

Mazumder, Hastie and Tibshirani (2010) (especially comparing their equation (9) to our expression

(7) above) and Witten, Tibshirani and Hastie (2009) for extensions. Further technical details on

the estimation of SFA appear in the online supplemental materials.

For a discussion of variable selection on latent dimensions in a Gaussian copula framework, see

Murray et al. (2013); Pitt, Chan and Kohn (2006); Hahn, Carvalho and Scott (2012).2 Correctly

estimating the number of dimensions in the latent space is substantively important in its own right.

Imposing too few dimensions will attenuate the models explanatory power, while estimating too

2We differ, in particular, from Murray et al. (2013) in that the authors simply use the rank-likelihood and do not

estimate underlying cutpoints but take them as determined wholly by the data marginals (see Murray et al. (2013,

Sec 2))
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many dimensions leaves the analyst interpreting chimerical dimensions, over fitting in-sample, and

predicting poorly out of sample.

An alternative to our procedure would be to fit the model using maximum likelihood and

selecting the number of dimensions via some ancillary criterion. Doing so would raise the meta-

question of which of a potpourri of statistics to choose,3 each of which may give different results.

Given that our model simultaneously provides us with a criterion to select the number of dimensions

while at the same time yielding a joint posterior density over dimensions and the other parameters

of the model, we believe that researchers will find the modest additional effort to estimate the model

worthwhile.

Zero-inflation and robust cut point estimation. To cope with zero inflation in text data we

must move beyond the Poisson to a more flexible marginal density for term counts. If data are

generated by a Poisson density, it should be the case that the ratio of zero term counts to single

counts should approximately match the reciprocal of the mean.4 For instance, using the text data

for the Congressional example we consider in Section 3, the ratio of zero counts to single counts is

approximately 3
2
, fully twenty eight times the reciprocal of the mean5 which is about 3

56
.

The map from the latent space to the marginal density presents another challenge. The link

between the emphasis chosen by speaker l for term w and the term frequency Tlw given by ex-

pression (5) depends on the τk. To avoid having to estimate what are potentially thousands of

parameters, we instead model these cutpoints in terms of a much smaller number of parameters.

3One could select among a likelihood-ratio test with a p-value cutoff, the AIC, BIC, or GCV, or yet one of several

cross-validation statistics.

4For the Poisson with parameter λ the reciprocal of the mean is 1
λ , while pp0q

pp1q
“ 1

λ .
5The ratio of zeros to ones is 1.50, while the reciprocal of the mean count is 0.05.
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We take the empirical CDF for a given legislative session as our point of departure:

pFpcq “
1

LW

L
ÿ

l“1

W
ÿ

w“1

1pTlw ď cq. (8)

Except for ties, using the empirical CDF is equivalent to embedding ranks in the interval p0, 1q

(Murray et al., 2013; Hoff, 2007). We model all cutpoints as depending on a fixed set of three

parameters. The cth cut point is:

τc|β0, β1, β2 “ β0 ` β1 pFpc´ 1qβ2 (9)

where:

pFp´1q “ 0 (10)

β0 “ τ0 “ Φ´1
´

pFp0q
¯

(11)

β1, β2 ą 0 (12)

Modeling the cutpoints in terms of pFpcq instead of c leaves them less sensitive to extreme outliers,

as the observed frequencies constrain the extremes. Forcing the intercept, and hence first cut point,

to be Φ´1
`

pFp0q
˘

addresses zero-inflation directly: the probability density below the intercept is

equal to the proportion of zeroes in the data. Notice that the first cut point, β0, which is the same

for all elements of the term document matrix, matches Φ´1
`

pFp0q
˘

. The quasi-linear form of β1 and

β2 allows some flexibility in modeling the cutpoints while still ensuring that they are an increasing

function of c. We estimate the values of β1 and β2 through a Hamiltonian Monte Carlo sampler

that we implemented (Neal, 2011).6

Motivation behind cut point model. We note that common practice in text modeling involves

a “pre-estimation” stage in which analysts remove sparse and rarely-used terms from their data.

6See the online supplemental materials for details.
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Different choices at this stage result in a different total proportion of zeroes in the term-document

matrix, making it an example of what Simmons, Nelson and Simonsohn (2011) refer to as a “re-

searcher degree of freedom:” a choice made while collecting and formatting the data that is given

only cursory discussion and may have a substantial impact on the results. Rather than quietly

adjusting the data cleaning rule to produce a desired result, we believe strongly that consequential

data processing decisions should be part of the estimation process and so our cut point density

includes a parameter that adapts to the total number of zeroes in the term-document matrix.

The count probabilities implied by expression (5) bear a close formal resemblance to an ordered

probit model with a profusion of thresholds, though because our model applies to count data, it

possesses no maximal category and so, technically, it is not an ordered probit model (see McKelvey

and Zavoina (1975) or Greene (2000), p. 875–879). Because we observe counts from 0 to several

thousand, we do not fit a cut point for each value. Instead, we formulate a model for the cutpoints

that reflects three attributes common to text data. First, the data is zero-inflated: most members

do not use most terms in a given year, and this is problematic for the Poisson model. Second, the

data is highly skewed: the observed counts range from 0 to the thousands. Third, the largest values

are highly variable from year to year.

While we have taken a semi-parametric approach to the marginal distribution over term fre-

quencies, we note that Poisson densities (Chib and Winkelmann, 2001) have also been used as

the marginal densities of Gaussian copula models. We prefer pFpcq because even compared with a

Poisson model that has been adjusted for zero inflation, pFpcq better accommodates the empirical

term frequencies than would Poisson marginals. To illustrate, we fit both SFA and a latent Poisson

model, implemented using the Wordfish algorithm of Slapin and Proksch (2008) and Lo, Proksch

and Slapin (2014), to the term document matrix for floor speeches from the 112th Senate. Though
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Figure 1: Accounting for Zero Inflation. This figure presents the fitted values for the 38, 585
cases of an observed zero count in the legislator-term matrix for a Poisson density over term counts
(left) and SFA (right). Of these zero counts, SFA gives a fitted value of below one for 17, 258 of
them, versus 3, 084 for the Poisson model. The marginal density used by SFA better fits the zeroes
in this data than does the Poisson model. XXX observations with fitted values from WordFish
above 80 were omitted from the figure.

we describe the data from our example more fully below, we bring it up now to compare the two

methods. Figure 1 presents boxplots of the fitted values for the 38, 585 cases of an observed zero

count in the legislator-term matrix for a latent Poisson model (left) and SFA (right). Of these zero

counts, SFA gives a fitted value of below one for 17, 258 of them, versus only 3, 084 for the Poisson

model7. The more flexible marginal density allows SFA better to fit the in-truth-zero terms, a key

attribute of the data.

Prior sensitivity. The sensitivity of posterior inference to prior parameter specification is a

generic concern for Bayesian models. With the exception of parameters about which the existing

7As an additional exercise we consider the log-likelihood of the two estimates. Using the framework of the

Wordfish model the Poisson density induces a log likelihood of ´2360835, substantially less than the value for SFA

of ´1148267.
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scaling literature has developed standard priors (e.g. Lauderdale and Clark, 2014, Sec 3.2) we select

non-informative prior densities for our parameters. One component of our model, the Bayesian

LASSO, uses two hyperprior parameters set by the researcher. We take as our hyperprior parameters

on the Gamma prior those used in the literature (Park and Casella, 2008; Kyung et al., 2010), namely

a shape of 1 and rate of 1.78. This prior expresses the expected size of effects we would expect to

see, on a z-scale. This prior captures the belief, before seeing the data, that we will see effects of

size about 1{1.78 « 0.57. We encourage varying these parameters to assess posterior sensitivity,

which our software allows. We illustrate in the example below.

Balancing words and votes. As there are often an order of magnitude more terms than votes,

the researcher may fear that the term data is swamping the vote data. We therefore introduce a

parameter, α, that controls the relative information coming from each source.8

At α “ 0, all information on the scaled locations comes from votes; at α “ 1, all information

on the scaled locations comes from words. Even when using information from only text or only

votes, SFA offers additional insight over existing methods. When scaling off only the votes, SFA will

place words in the same latent space as the votes, giving an ordering to terms driven by the vote

information. This can help the researcher interpret the latent dimension, through finding words

that are extreme in the vote dimension. Scaling the two datasets separately does not allow one

dataset to inform the other.

We suggest three ways to select α. The first involves fitting α at a range of values and present

the results, showing how they change along these shifts. This is the strategy we follow in our

8As a Bayesian model, the sources could be averaged and weighted by their precisions. Since the latent space is

standard normal, the precision is 1 for each source. An unweighted average, though, will leave the words dominating

the votes.
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example below, presenting results for α P t0, 1{2, 1u. As a default, we suggest this strategy, unless

the researcher has a substantive reason to select α by one of the data-driven strategies below.

As a second strategy, we suggest selecting α such that the ideal points are maximally discrimina-

tory.9 Denote as a function of α both the dimension weights adpαq and the most preferred outcomes

xldpαq. Our criterion favors strong dimensions
`

large values of tadpαqu
D
d“1

˘

as well as ideal points

´

txldu
pL,Dq
pl,dq“p1,1q

¯

that provide maximal discrimination among individuals. The criterion we suggest

is:

discpαq “
D
ÿ

d“1

L
ÿ

l“1

L
ÿ

l1“1

adpαq
2
pxldpαq ´ xl1dpαqq

2 (13)

with α chosen to make the lefthand side of equation (13) as large as possible. All the elements

needed to calculate discpαq are returned from the MCMC output, so our software returns the full

posterior density of this statistic, and the optimal value can be selected on the basis of which has

the highest mean discrimination.

As a third criterion, we also implement the WAIC statistic, a Bayesian approximation of cross-

validated prediction performance (Vehtari, Gelman and Gabry, Forthcoming). Though we favor a

default of 1{2 and of presenting results from α of both 0 and 1, our discrimination and WAIC statistic

give a means of a data-driven means of selecting α. We illustrate the use of the discrimination and

WAIC statistics in the online supplemental materials..

Software. We offer two implementations of the software. The first is a full MCMC implemen-

tation, which generates samples from the full posterior given the data. This allows the researcher

to not only estimate the spatial locations as well as the number of latent dimensions, but also to

characterize the uncertainty estimates. The second is an EM implementation. While it only returns

9We are grateful to Brandon Stewart for suggesting this approach, by “maximally discriminatory” we mean

“producing the greatest variance in estimated spatial locations”.
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point estimates, it is faster than the MCMC implementation and often useful for preliminary results

during the process of practical modeling.10

Additional uses. We have focused on a situation where both votes and term counts are present.

There are cases where we observe legislative speech, but we either lack their votes or the votes are so

heavily whipped we do not trust them. In this case, as we show in the context of our Congressional

data, SFA can leverage words to recover reliable ideal point estimates even in the absence of reliable

vote data for non-party leaders.

Moreover, SFA estimates the spatial location of terms. Existing studies estimate the politi-

cal affect of terms by attributing left leaning content to those used by Democrats, and rightward

import to those spoken by Republicans (Gentzkow and Shapiro, 2010; Laver, Benoit and Garry,

2003), or modelers posit that terms and votes arise from two conditionally independent data gener-

ating processes (Lauderdale and Clark, 2014; Gerrish and Blei, 2012). SFA scales terms and votes

simultaneously, providing natural structural estimates of word affect.

2.3 A Discussion of our Assumptions

Before considering any statistical method, the researcher should check that the assumptions of the

model seem plausible in the study at hand. SFA extends the standard quadratic-loss spatial random

utility model (Ladha, 1991; Clinton, Jackman and Rivers, 2004) to encompass speech.11 Though

SFA can be fit to any data combining votes and text, we next consider the assumptions that allow

us to interpret the results as estimates of preference parameters.

Behaviorally, our model assumes legislator l’s votes and speech are both chosen as if she sincerely

10See the online supplemental materials.for the details of EM implementation.
11Note that this framework differs from that of Poole and Rosenthal (1985, 1997), whose seminal work assumes

Gaussian utility.
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held an ideal point of txldu
D
d“1. It may be that these preferences are in fact sincere, but the posited

behavior is also entirely consistent with the legislator seeking to convince her constituents that she

behaves as if she held such preferences. Even if the agenda is structured so that members vote

strategically on amendments, the ideal point estimates remain unbiased, though strategic voting

does affect the interpretation of the bill parameters (Poole and Rosenthal, 1997, p. 228). Likewise,

the legislator speaks as though her preferred outcome was txldu
D
d“1. This may in fact be a tissue of

lies, what matters for our purposes is that she speaks consistently as if she actually held the beliefs

she claims to, and in particular that her preference parameters are impervious to being changed by

persuasion.

SFA also requires two underlying structural assumptions. First, like the standard vote model,

the SFA vote model requires an exogenous agenda, while the term model requires that the relevance

of different terms be set exogenously. In both cases, the model assumes that all actors are “agenda-

takers” rather than “agenda-setters.” Secondly, also like the standard vote model, the SFA vote

model assumes that the legislators all agree about the spatial locations of the exogenously given

status quo and alternative positions associated with each vote (Ladha, 1991, esp. Sec 2), and about

the political content of each term they utter. Basically, words have to mean something, everyone

has to agree approximately on what they mean, and that meaning cannot change over the period

under study. This will typically be the case for people operating in the same legislature during the

same session. The assumption becomes more problematic when applied across distinct contexts

and widely different time periods. The payoff from placing the latent speech and voting variables

together in a common space is that we can use both sources of information to obtain more precise

estimates of legislators’ spatial preference parameters.

Even when these assumptions hold, the spatial preferences recovered by our estimator may
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correspond to a non-ideological attribute. Of course, the resulting estimated locations are no less

a reflection of preference for corresponding to non-ideological traits. For example, in our analysis

below, the second dimension we identify reflects differences between the vocabulary of party leaders

and rank-and-file members. In this case the most preferred vocabulary of leaders is consistent with

conducting business, assigning bills to committees, and organizing votes, while for other legislators

it is not. Nevertheless, our framework captures this difference as a spatial attribute.

SFA, or any scaling method for that matter, should only be applied in situations where the

assumptions seem reasonable given substantive knowledge. For example, we apply the method to

US Senate floor speeches, noting that members of Congress are notorious for “dying with their

ideological boots on” rather than changing positions on the issues (Poole, 2007). We would be less

comfortable applying the method to judicial argument, in which case judges if not litigants likely

do change their views. In Section 3, we apply our estimator to Congress, and we implement several

methods for assessing internal and external validity, methods that analysts might want to use as

checks when using SFA.

Topic Models and Related Methods We note that our method differs from the popular

topic model approach to text analysis (Roberts et al., 2014; Grimmer, 2010; Blei, Ng and Jordan,

2003). In brief, when a researcher is looking for an underlying latent structure ordering actors

and their choices, and they are comfortable making the model’s assumptions, then SFA should

be implemented. In the absence of any structural or behavioral assumptions, topic models will

always return a summary of clusters within the data. We emphasize that this is not an either/or

distinction; SFA and topic models calibrate disparate features of the data.

Lastly, we situate SFA in the context of several other related methods. Many l scholars have

combined voting data with a topic model (Lauderdale and Clark, 2014; Wang et al., 2013; Gerrish
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and Blei, 2012). The methods, particularly when applied to courts, offer great insight: we may

think of courts as voting on a wide array of topics, and judicial preference may vary greatly from

one to the next. These models differ from SFA in two crucial aspects. First, the topic model

methods do not give an ideological position to terms. Terms are not placed on, say, a left-right

dimension shared by the actors. The topic models capture what actors are voting about, but not

the ideological structure of the topics. Second, the models offer a disjointed relationship between

words and votes. Actors are choosing both words and votes, but only vote choice is grounded in a

spatial model. SFA differs by offering a tight, and formal, coupling of the ideological preferences

that generate terms and votes. SFA is a model for term selection that is fully compatible with the

standard and accepted models of vote choice.

Comparison with additional methods. SFA is related to several existing methods for scaling

votes, scaling text, and combining multiple outcomes in a single factor analytic model. Our model

is an extension of Ladha (1991) and Clinton, Jackman and Rivers (2004) who model votes in a

latent space, which they connect with binary choice using a probit model, and of Slapin and Proksch

(2008) and Lo, Proksch and Slapin (2014) who model spatial choice in a Poisson framework. Here we

connect the latent space with count as well as binary outcomes (Murray et al., 2013). Our estimation

technique relies on probabilistic principal components analysis (Tipping and Bishop, 1999), whereby

singular vectors and latent factors correspond if the errors are assumed independent and identically

Gaussian. The method is factor analytic, as opposed to a singular value decomposition, because

the scaling takes place in a latent space rather than operating directly on the observed data. We

connect the two spaces using a Gaussian copula for mixed data.

Rather than matrix decompositions in a latent space, several works have turned to a Poisson

or negative binomial model in order to model term counts. For example, Wordfish of Slapin and

19



Proksch (2008); Lo, Proksch and Slapin (2014) is similar to SFA, for terms, but under a Poisson

or negative binomial link instead of a probit link. SFA leads to an identical formulation for the

latent systematic component of word choice, except the latent component is exponentiated in order

to guarantee positivity (see also Elff, 2013; Bonica, 2014). SFA differs in that it places both word

and vote choice in the same latent z-space, allowing both types of data to be modeled jointly. Our

cut point model allows for a more flexible mapping from the latent to observed data space. We also

model the zero-inflation directly and are robust to outliers, as described above. SFA also estimates

the underlying dimensionality.

The use of the Poisson by Slapin and Proksch (2008) notwithstanding, many analysts eschew

both the Poisson and the Negative Binomial in their analysis of text. Examples include: the widely

used Wordscores model of Laver, Benoit and Garry (2003) or the nonparametric content analysis of

Hopkins and King (2010); the text based “slant” measures used by Gentzkow and Shapiro (2010);

the LDA formulation of Blei, Ng and Jordan (2003); Gerrish and Blei (2011) which converts term

counts to proportions, thereby admitting a Dirichlet prior; PCA or kernel PCA on the tf-idf matrix

Spirling (2012); and semiparametric copula models for mixed data Hoff (2007). Like these, SFA is

not based on a Poisson model; see Murray et al. (2013, esp. 2.1) for a formulation close to SFA’s.

Mixed factor analysis models have turned to copulas to combine data of different types. In these

models, mixed data such as counts, binary, and continuous data, are placed on and analyzed on

an common underlying latent scale. The Gaussian copula, which places all data on an underlying

common z-scale, is a typical choice. For example, Quinn (2004) converts observed continuous data

to a z-scale, and then combines it with ordinal and categorical data on the same scale; for recent

extensions, see Murray et al. (2013); Hoff (2007). Our model is closely related to that given in

Murray et al. (2013, sec. 2.1). We differ in that we only have two types of data, text and votes, and
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hence have to estimate only one set of cutpoints, whereas Murray et al. (2013) consider the problem

of generic types of data. Murray et al. (2013) work with the transformed ranks of all variables,

eschewing cutpoints entirely. For that reason, our method is more powerful when modeling votes

and text. SFA also introduces a cut point modeled tailored to several common aspects of text data,

as we describe above.

Other methods have estimated dimensionality (Hahn, Carvalho and Scott, 2012; Heckman and

Snyder Jr., 1997). Additionally, Aldrich, Montgomery and Sparks (2014) show that sufficiently

large cross-party variance can mask important within-party dimensions.12

3 Illustrative Application: The US Senate, 1997–2012

In this section, we apply SFA to recent US Senate data. The analysis proceeds in three steps. First,

we describe the data and discuss the viability of SFA in this context. Second, we apply the method

to the contemporary US Senate. Third, we simulate a “strong-party” system where we use SFA

show how SFA can use text data to recover ideal points even in the presence of heavy

3.1 Data

We apply SFA to the eight recent sessions of the US Senate. We scale using both votes and

words, returning both ideology estimates and our calibration of the underlying dimensionality. Our

data come from two sources. Rollcall data come from VoteView.13 For the text data, we rely on

floor speeches as gathered by the Sunlight Foundation.14 Following standard practice (e.g., Quinn

et al., 2010; Grimmer and Stewart, 2013), we stem, eliminate stop words, and model unigrams and

12We differ from these works in combing both vote (binary) and word (count) data.
13 http://www.voteview.com/. Last accessed October 27, 2014.
14 http://www.capitolwords.org/. Last accessed October 24, 2014. Replication scripts for creating the corpora

and the analyses available at Kim, Londregan and Ratkovic (2017).
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bigrams. Both vote and speech data are polled over the full session. We trim all terms that are not

used by at least ten people at least ten times over the course of the session.15

Before applying the method, let’s consider the applicability of SFA in this case. First, voting

is not always sincere in the US Senate, as there are always motions to recommit, etc. We note,

though, that ideal point estimates from the US Congress have been used extensively in other studies

and possess high face validity. To be particularly careful, if a bill is voted on several times due to

different motions, we only include the final vote in our analysis.

Second, we consider the sincerity when speaking. Previous work has shown, albeit in the US

House, that floor speeches are expressive rather than deliberative (Hill and Hurley, 2002; Maltzman

and Sigelman, 1996). Many floor speeches aren’t even read verbally, but simply entered into the

record, also suggesting that floor speeches are vehicles of expression rather than persuasion. For that

reason, we feel more comfortable applying the method to floor speeches rather than, say, conference

committee meetings.

3.2 Results

We present three sets of results. Each corresponds with the proportion of information in the votes

coming from votes instead of words (α P t0, 1{2, 1u). We present results on the estimated number

of dimensions and interpretation of each.

Scaling results informed only by votes (α “ 0). We begin with the model with information

coming only from votes. This model places a posterior mass estimate of 100% on one dimension for

each Senate. Posterior means of ideal point estimates correlate with DW-NOMINATE estimates

ranging from 0.95 to 0.98 across the eight Senates analyzed here (see the first dimension of Figure 4

15A complete summary of the data can be found in the online supplemental materials.
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Figure 2: Posterior density over number of underlying dimensions for the joint word
and vote model. We find a pronounced mode at two dimensions consistently across Senates. The
average across all Senates appears in the top left corner.

below).

Scaling results informed by words and votes (α “ 1{2). We next move on to the model

that gives equal weight to words and votes. First, we consider the estimated number of dimensions,

see Figure 2. The average density over the number of dimension parameters merging all Senates is

in the top left corner, while the successive sessions are depicted from top to bottom and from left

to right. A pronounced mode at two dimensions reappears consistently across Senates.

Not only is the finding of two dimensions consistent, but the two dimensions themselves are
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112th Senate

Distribution of Words Along Ideological Dimension when Scaled with Votes

Figure 3: Log density of term weights, after scaling votes and terms together. Each
local mode is labeled by the five terms closest to that mode. The left figure presents results from
the Republican controlled 108th Senate, the right figure contains results from the Democratic led
112th Senate.

stable across sessions. The first closely coincides with the standard ideology dimension uncovered

from scaling roll call votes. The second appears to be a leadership dimension, with party leaders at

one end while a variegated mix of rank-and-file partisans and ideological moderates populate the

other.

Figure 3 presents the log density of term weights, after scaling votes and terms together. The

weights are oriented such that terms more likely to be spoken by Republicans are to the right. Each

local mode is labeled by the five terms closest to that mode. The left figure contains results from

the 108th Senate, a Republican-led session during President George W. Bush’s tenure. The right

figure contains results from the 112th Senate, a Democratic-led session during President Barack

Obama’s time as President.

We find a consistent pattern: for the majority party, the most extreme terms relate to parlia-
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'Boehner'

Identifying Moderates with Cutting Lines

Dimensions Identified by SFA

Figure 4: Latent Dimensions Estimated by SFA, 112th Senate. Legislators’ preferred out-
comes on the first dimension (x-axis) and the second (y-axis). The left plot labels party leaders,
whips, and top chairmen. In the right plot cutting lines separate frequent from infrequent users, of
the terms: Boehner, student loan and fiscal cliff.

mentary control words (consent committee, author meet, meet session). For the minority party, the

first dimension identifies ideologically relevant terms. For the Democrats during the 108th Senate,

these terms included administr, as the Democrats soured on the current Presidential administra-

tion, and health, a centerpiece of the Democratic policy agenda. In the 112th Senate, with the

Democrats in the majority, parliamentary control terms switched their ideological polarity, aligning

with the Democrats (author meet, meet session, consent committee). The Republican end of this

first dimension reflects that party’s programmatic concerns over fiscal balance (budget, stimulus,

debt, trillion).

Next, we look at the preferred outcomes of legislators from the 112th. Points in Figure 4 are

shaded in proportion to their first dimensional DW-NOMINATE score, showing the agreement be-

tween SFA and DW-NOMINATE on the first dimension (pρ « 0.95). The left plot labels party
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leaders, whips, and top chairmen, showing the close relationship between locations on the second

dimension and leadership. The first dimension captures the political battle lines, reflecting legisla-

tors left vs right policy differences, while the second, vertical, dimension reflects differences in the

terms selected by leaders versus the rank and file members.

The right plot of Figure 4 contains cutting lines for three terms: Boehner, student loan, and

fiscal cliff. The lines were constructed such that legislators on one side are expected to use the

phrase above the median number of its raw usage, and on the other side legislators are expected

to use the word below its median number of times. We find leaders are more likely to use the

word Boehner, the House Speaker during this session. Republicans were more likely to use the term

fiscal cliff, with leaders the most likely. Democrats were more likely to utter the phrase student

loan, again with leaders the most likely to employ the term. SFA identifies a group of Republican

moderates in the top V, here we label them by name. These moderates are not likely to use either

student loan or fiscal cliff.

Concerned about prior sensitivity, we also varied the LASSO prior parameters by a factor of

p0.25, .5, 1, 1.5q, generating 16 different runs. We find similar results results, with scaled locations

across the settings correlating above 0.95, on average. When we select these parameters by the

WAIC, we find the same results as those presented here: two stable dimensions, and again scaled

locations correlating with those estimated below above 0.95.

Scaling results informed by only words (α “ 1). We also apply SFA using only information

from words. This is not our preferred model, as it ignores vote data, yet SFA still uncovers structure

in the text data. The posterior density of estimated dimensionality for pooled floor speeches can be

found in Figure 5. Results across all sessions are in the top left corner while the remaining sessions

follow in order from top to bottom and from left to right. In contrast with the high concentration
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Figure 5: Estimated Underlying Dimensionality for Senate Floor Speeches. Results across
all sessions are in the top left corner and remaining sessions follow.

of probability on two dimensions in our preferred model, when we exclude the valuable information

contained in votes and analyze oratory alone, we obtain a somewhat more diffuse density that

accords a 75% probability to there being between five and eight dimensions, and a probability of

over 95% that the underlying dimensionality is within the range r4, 11s. Looking at individual

sessions, we find a similar dimensionality, albeit with some year-to-year variation.

Figure 6 contains the top ten words at each of the first six dimensions of the 112th Senate. We

note that the positive and negative level distinction along the y-axis is wholly arbitrary, as we only
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Figure 6: Extreme Terms by Dimension, 112th Senate. Extreme terms for the first six dimen-
sions as estimated by SFA from the 112th Senate. The type size of each term is proportional to the
absolute value of the associated coefficient; terms earning positive coefficients appear in the upper
part of the panel, those assigned negative coefficients are presented in the lower segment.

identify term levels up to a sign. Looking at the first column, we find that the first dimension starts

with a set of non-controversial terms. These include parliamentary procedural terms (as opposed

to parliamentary control terms) such as today wish, madam rise, and colleague support. Also on the

non-controversial side are martial terms with universally positive affect during this Congress such

as army, air forc, and deploy. On the other side are words that will be used in to differentiate issues

in other dimensions, such as tax, vote, and peopl. The other dimensions have at their extremes

words connoting some underlying dimension of policy. For example, the second dimension ranges

from judiciary and women’s issues at one end to fiscal concerns at the other; the fourth goes
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from a broad set of social welfare concerns to the consideration of judicial nominees. These lower

dimensions adapt to the issues of the day. Tobacco, for example is present in the 105th Senate; Iraq

comes and goes as an issue, and health care goes from dealing with seniors and Medicare in the

107th Senate to dealing with students and families in the 112th. Even without including votes in

our analysis, SFA selects a relatively parsimonious and informative representation of the Senate.

Extension: Imputing estimates for members’ given only votes from leadership. We

next offer a possible extension of SFA. In a strong party system, legislators vote their party’s rather

than their own preferences (e.g., Kellerman, 2012). In these cases, votes may not be a trustworthy

measure of preference, but legislative speech may help provide leverage. To simulate this scenario,

we coded all vote data except for the party leaders and whips as missing, while maintaining all

speech data. This left a vote record for less than 4% of the Senate. We then compared the SFA

ideal point estimates to the SFA estimates using everyone’s speech, but only leaders’ votes.

Results are present in Figure 7. We again recover two dimensions, but as we have dropped over

95% of our observed vote data, the order has flipped. Our first dimension is now driven by words

and the second by votes. The left panel of the figure compares estimates for the voting dimension,

which is the second dimension estimated with the heavily censored data (plotted along the vertical

y-axis) versus the first dimension of the uncensored estimates (along x-axis). Observations are

labeled by party, and leaders’ locations are in bold and circled.

As expected, with so little voting data, recovery of the first dimension is far from perfect, but

remarkably the imputed scores correlate highly, at more than 0.85. This effect is not simply a

cross-party effect due to extreme partisanship; the within-party correlations are more than 0.8.

The right hand panel compares estimates for the “leadership” dimension, the first dimension in

the censored data but the second in the full data. The censored estimates correspond closely with
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Figure 7: Estimated Ideology when Only Leaders Votes are Informative. The voting
dimension estimates appear in the left panel, with the censored estimates measured on the vertical
(y-axis) while the uncensored ones appear on the horizontal (x-axis). In the censored data the
salience of the voting dimension drops, so that it becomes the second dimension. The righthand
panel exhibits the leadership dimension, again the censored estimates correspond with the vertical
(y-axis) and the uncensored ones coincide with the horizontal (x-axis).

their uncensored counterparts, as this dimension is driven primarily by words and these were not

censored.

4 Conclusion

We propose a method, Sparse Factor Analysis, for combining votes and text data in a single scaling

procedure. The method models both word choice and vote choice in terms of the same ideal points.

Furthermore, we develop a statistical framework that allows us to estimate both individuals’ most

preferred outcomes and the underlying dimensionality of the joint word-vote space. The resulting

methodology provides a close linkage between the choice-theoretic models of vote and word choice.
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This tight connection allows the extension of SFA to more complex decision scenarios (Clinton

and Meirowitz, 2003, e.g.). SFA allows the analyst to estimate the underlying number of latent

dimensions, rather than having to impose dimensionality a priori.

Substantively, we analyze legislative speech and roll call voting from eight recent sessions of the

US Senate. Combining both data sources reveals a consistent picture of a two dimensional Senate,

with the first dimension coinciding with the voting dimension, while the second distinguishes leaders

of both parties from the rank and file. epar

While SFA is designed to analyze individuals who both speak and cast votes, it allows us to

impute policy preferences to non-voting political speakers, a potential we illustrated for the case of

newspaper editorial boards. This may prove useful in confronting the perennial research problem

of imputing the preferred policy outcomes of legislative candidates. While analysts can impute the

ideology of victorious candidates from their subsequent congressional conduct, as they can infer the

leanings of defeated incumbents from their previous voting records, measuring the preferences of

defeated challengers has proven to be a more elusive goal. Yet every challenger spends time and

energy generating political speech. SFA offers the possibility of imputing the most preferred policy

such a candidate would have pursued had he been elected.

We hope the approach in this paper also finds purchase beyond the US Congress. For example,

in strong party systems where votes are relatively uninformative, words may be used to help clarify

the within-party variance in ideal points. We are currently exploring applications of the method in

situations where voting is not perfectly reflective of underlying individual preference or where ideal

points are allowed to evolve over time.
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